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Abstract

We review the Adomian decomposition method(ADM). We give general descrip-
tion of this method, the convergence analysis of this method and we present some
modifications for the standard ADM. In chapter 3, we will give examples of using
ADM for obtaining exact and numerical solutions for nonlinear ordinary differential
equations, partial differential equations and integral equations. We present a solu-
tion of generalized log-KdV (The Korteweg de Vries) equation as an application of
using the ADM for solving nonlinear PDEs of higher order. In chapter 4, we will
consider different types of inverse partial differential equations, boundary conditions
identification, coefficient identification and source identification using ADM. In this
part, we will try to solve the heat conduction inverse problem in special cases using

Adomian decomposition method.

111



;uasj.d\

& padul Al Adomiandsadll 4 o (a je s Alu )l oda (e et ) Caagd)
ik Al Cliaatl) sy (e WIS 540 jal) g alall lialitl) ciY sl O
Jad) @l sha laia) g an e Jal Geddy jhll s2a e

L.;Ad()mian Jiadll 31 )k AREGNY e ABY) (pe aaall PREY @M\ | =
A el Adalaill ¥ alaall g dudadll jie g adadl) Aalel) ddialaill ¥ aladll Ja
asti AU ol 3 ¥ alaall 028 (e 458 Aakai] Liay g dpladll e 5 dydadl)

Ja 48 mymy Jeadll 138 (g0 aY) e all 2N As ol e KDV Aabase sy
Aalaal) dealal ey bl

Leda 5 Sl Aplialiil) il dlaall (e B ) 5 (a e a s 5aY) g AN Juadl)
03¢3 (Sall Jaa i) A s J gl 5 (e s Adomiian Jeadl) 44 Hla pladinly
R



(I __Introduction|

2 Adomian Decomposition Method(ADM)|

[2.1 ~ General Description ot ADM| . . .. ... ..

[2.1.1 Solution algorithm|{ . . . . .. ... ..

[2.1.2  The Adomian polynomials| . . . . . . .

[2.2  The Convergence Analysis of ADM| . . . . ..

[2.2.1 The Convergence order ot ADM| . . . .

Contents



Contents v
2.3.2 Wazwaz Modifications . . . . ... .. ... ... ... ... 13

[2.3.3  'Two-Step Adomian Method . . . . . . . ... ... ... ... 14

[3 Applications on ADM]| 21
[3.1  Ordinary Differential Equation|. . . . . . . .. .. ... ... ... .. 22
[3.1.1  Second Order initial value Ordinary differential equation| . . . 23

[3.1.2  Second order Singular Initial Value Problem| . . . . . . . . .. 27

[3.1.3 Boundary Value Problems| . . . . . . .. ... ... ... ... 30

[3.1.4 Singular Boundary Value Problems| . . . . . . . ... ... .. 33

[3.1.5  System of Ordinary Difterential Equations| . . . . . . . . . .. 37

[3.2  AMD For Solving Partial Differential Equation|. . . . . . . . ... .. 41
(3.2.1 First Order nonlinear PDEf. . . . . . .. 0000000000 41

[3.2.2 Second Order PDESl . . . . . ... ... oo 47

[3.2.3  'T'hird Order nonlinear Partial Differential Equations] . . . . . o7

[3.2.4  System of Partial Differential Equations] . . . . . . .. .. .. 61

[3.3 Integral Equations| . . . . ... ... ... o000 64
4__Inverse Parabolic Problems| 67
[4.1  Inverse Problem of Boundary Conditions Identification| . . . . . . .. 68




Contents vi
4.2 Inverse Problem of Coefficient Identification| . . . . . . . ... .. .. 83
[4.3  The Inverse Conductivity problem|. . . . . . . .. ... ... ... .. 87

[References] 90



CHAPTER 1

Introduction

The Adomian decomposition method was presented in 1980’s by Adomian.
The method is very useful for solving linear and nonlinear ordinary and partial
differential equations, algebraic equations, functional equations, integral differential
equations and the convergence analysis of the ADM was discussed in [2]. Y. Cherru-
ault and G. Adomian give the new proof of convergence analysis of the decomposition
method [I6]. E. Babolian And J. Biazar, define the order of the convergence of ado-
mian method in [I1]. After that many modifications were made on this method by
numerous researchers in an attempt to improve the accuracy or extend the appli-
cations of this method. In given in [9]. A new modification methods of the ADM,
Wazwaz modifications and the two step modified Adomian decomposition method.
In chapter 3, we will use the ADM to solve different types of differential equations.
Yahya Qaid Hasan and Liu Ming Zhu modified the ADM to solve second order sin-
gular initial value ordinary differential equations [21]. Several examples on solving

the ordinary differential equations, initial value problems and boundary value prob-



lems are introduced in [2]. J. Biazar, E. Babolian and R. Islam in [12] obtained the
solution of a system of ordinary differential equations by using ADM. In the second
part of chapter, we will apply the ADM for solving partial differential equations.
We will consider first order PDEs as done by [7]. Then, we move to several 2"
order PDE’s; linear heat equation, nonlinear heat equation [14], linear wave equa-
tion and nonlinear wave equation [I5]. The generalized log-KdV (Diederik Korteweg
and Gustav de Vries)equation in [38] will be solved by ADM as an application on
higher order PDE’s. We apply the method for solving system of PDE’s as in [7]. At
the end of this chapter, we show how we can solve the integral equations by using
Adomian decomposition method.

In chapter 4, we review some inverse problems and show how ADM is used for solv-
ing these problems. There are many classifications of the inverse problems, we will
deal with boundary conditions determination of inverse problems[31] and parameter

determination for some equations[35].



CHAPTER 2

Adomian Decomposition

Method(ADM)

2.1 General Description of ADM

In this section we give standard description of the ADM and some of its

modifications depending on the references[7, 40, &, 2]. Consider the general equation
Lu+ Nu+Ru=g (2.1.1)

where u is the unknown function, L is the linear differential operator of higher
order which is easily invertible. Assume its inverse is L™! and it will be an integral

operator, N is the nonlinear operator, R is the remaining linear part and ¢ is a given

function (source). Take L~! to both sides of (2.1.1)) to get:

L™ Y(Lu+ Nu+ Ru = g)
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L' Lu=L"g— L 'N(u) — L'R(u)
thus,
u—¢=L"g— L 'N(u)— L 'R(u) (2.1.2)

where ¢ is presented from the initial conditions or from the boundary conditions or
both, it depends on how we choose differential operator that solve the given problem.
The ADM assumes that solution u of the functional equation can be decomposed

into infinite series
o0
U= E Uy,
n=0

and the nonlinear term N (u) can be written as infinite series Nu = >~ A,, where

the A,,’s are the Adomian polynomials.By substitution this in (2.1.2)) gives:
dun=0¢+Lg—L"Y A — LD R(uy) (2.1.3)
n=0 n=0 n=0
Now from equation (2.1.3]), we can obtain the solution algorithm as follows:
u=¢+L'g, up1=-L (A, + Ru,), n=0,1,2--- (2.1.4)

Given ug, the other terms of v can be determined respectively. If one term of wu,, is

equal zero then the following terms are all zeros.

2.1.1 Solution algorithm

Refereing to [Il, [17], we will show how the solution algorithm (2.1.4) was

chosen. Consider the nonlinear functional equation

u—N(u)=f (2.1.5)
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where N is the nonlinear operator and f is a function determined after applying

L~ to the source function g. Suppose that the solution of ([2.1.5) is a family of

w=y u\" (2.1.6)
n=0

where A is a parameter. Suppose that the radius of convergent p of the series above
is grater than one, so the series converges for | A |[< p where p > 1. As we showed

previously the nonlinear function N(u) can be expanded in infinite series

N(u) = Z&iui (2.1.7)

with radius of convergence p, > 1, this implies that the series above converges for
| u |< po. In general it can suppose that py = oo because in practical applications
the nonlinear operator N(u) is a polynomial or a nonlinear function admitting an

entire series converging for any u with | v |< co. Now by substituting (2.1.6) in

(2.1.7) we get
(@) NO uA) =Y o> u Ay
n=0 =0 n=0

let >0 ai(D 0 gun)t = ooy Ai, then the above series is equivalent to
(b) N(u) =D AN =Ag+ A\ + A)° + AzX® + - - (2.1.8)
i=0

From the first expansion (a) of N(uy) in equation above we have

N(uy) = ag + ag(u, + urh + ugh® + - ) + agu, + ugh + uph? + - -+ )?

+ ag(uy + U A+ ugA2 42 )3 4o

= ap + aqup + arug A + agug A + - - - + apud + 2c0ugug A + aouiA? + 200ugus A2 + - - -+
azud + 3azudug A + - -

By matching this expansion with the second formula (b), the values of A;’s can be
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obtained as follows

2 3
Ay = ap + aqup + aouy + asug + -+ apul + -
2 -1
Ay = aug + 200upuy + 203uguy + -+ noguy” U e
A _ 2 2 2 3 2
2 = QUg + QU] + 2QiUpUl + Q3UgUs + SQzuou] + - -

From above we can conclude that the values of A;’s depend only on the values of

b

U;'S.

By substituting (2.1.8) and (2.1.6) in (2.1.5)) and make A\ = 1, we obtain, because of

the convergence of the two series:

iun—iAi:f (2.1.9)
n=0 1=0

This equation can be satisfied if:
up = f

Un1 = An(uOy Uy .- ,Un>

2.1.2 The Adomian polynomials

The Adomian polynomials A,,’s are first constructed by Adomian in 1992, he

gives general formula to determine the values of A,,’s[2].

1 dn "
A"ZEW[N(;AUU]A:o: n=01,2,-- (2.1.10)

The first three term of A,’s are

Ag = L5 [Ny Ng)]ao = N (u)
Ar = fi IN (s N azo = 5 [N (Auo + Aur)aco
= [N"(Aug + Mug]r—o(ur) = us N'(up)

Ay = %%U\T(Zz oA uz)],\ 0= %%[N(/\OUO + Muy + )\2U2]A:0
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= L LN (Nug + Mg 4+ N2us) (ug + 22 o) o = %[N/ (XNuo + Mug + Nua)(2un) +
N"(Nug + Muy + Nus) (uy + 2 uz)?] o

= Z—?N"(Uo) + ug N’ (ug)

The ADM is similar to find the Taylor’s series expansion for the nonlinear function
N (u) around the initial function ug.

N(u) = N(ug) + N'(uo)(u — ug) + %N”(uo)(u —up)t 4

since from ADM method u =Y 07  u, = ug + uy + uz + - - - substituting this in the
above expansion we get

1 1
N(u) = N(u0)+N'(u0)(u1+u2+~~)+EN”(uO)(ul + U9 + "‘)2+§N///<UO)(U1 +U2+"')3+"

after that we take apart the expansion terms

N(u) = N(uo) + N'(ug)(u1) + N'us + N'ug + - - + 5:N" (uo) (w1)? + 5 N" (uo)urus +
5 N (o )uguy + 5. N" (o) (uz)? + 5 N (uo ) ugus + 5, N (uo ) ugus +- - -4 3N (ug) (ur)® +
3 NV (uo) (ur)?ug + 5N (ug)ug(ur)® + 4 N (uo)uyuguy + - - -,

and by reordering the terms and determining the order of each term which depends
on both the subscripts and the exponent of the w,’s. For example the order of u],is
mn for example u? is of order 1 x 2 = 2 and the order of u,,u, is m+n. For example
upuy is of order 0 + 1 = 1 and the order of u™ul is mn + kI, for example u3u3 is of
order (2 x 3)+ (1 x3)=6+3 =29 and so on. Therefor, we get

N(u) = N(ug) + Nr(ug)us + N'(uo)us + o N" (uo)ui + N'(ug)uz + 2N" (uo)urus +
3 NV (wo)ui + N (uo)ug + 5N (uo)uj + 5N (uo)urus + SN (uo)uius + - - -

By comparing the terms from the previous formula with the terms of the assumption
N(u) =37, A, the values of A,’s can be constructed as follow

Ap = N(uyp)

Ay = ui N'(uyp)

Ay = usN'(ug) + LN (up)
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Ag = usN'(ug) + 2422 N" (ug) + 2L N" (uq)

which are the same values that we got from the Adomian’s general formula (2.1.10)

used to determine the Adomian polynomials A,,.

2.2 The Convergence Analysis of ADM

Cherruault has given the first proof of convergence of the ADM and he used
fixed point theorems for abstract functional equations. In this section we give the
proof of convergence of the Adomian decomposition method[I, [16]

Consider the general functional equation
u— Nu=f, uweH (2.2.1)

where H is the Hilbert space and N is the nonlinear operator N : H — H and
f = L7 'gis also in H. From the last section the ADM is based on assuming that

the solution u and the nonlinear function N(u) are decomposed into infinite series
w=>y " u, and N(u) = 2 A,
Substituting these decomposition series in ([2.2.1]) yields

o o0

D un =) Au=]

n=0 n=0
then the recursive terms are got from this algorithm

ug = f

Ups1 = An(uo, U, ..., uy)

The Adomian decomposition method is equivalent to find the sequence

Sp = uy + ug + uz + - - - + u, by using iterative scheme
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So=0

Sp1 = N(Sn + up),

where N (S, +up) = Y p_ Ax,
If this limit exist

S = lim S,

n—oo
in a Hilbert space, then S is a solution of the fixed point functional equation S =

N(up+S) in H.

Theorem 2.1. [Z] Let N be a nonlinear operator from a Hilbert space H where
N : H— H and u be the exact solution of . The decomposition seriesy .~ Uy

of u converges to u when
da < 1, || upsr ||IS a || uy ||, Vn € N U{0}.
Proof. We have the sequence
Sp=u1 +us+ -+ u,
We need to show that this sequence is a Cauchy sequence in the Hilbert space H.
I Snr = Su 1=l tngr IS @ [ wn [|1< 07 [ty [|< -+ < 0™ g ||
In order to prove that S,, is Cauchy sequence

| S = S Il =[ (S — Sm—1) + (Sm—1 = Sm2) + - + (Snt1 — Sn) ||
SN Sm = St [ 4+ 1] Sme1 = Sz | + | Sz = Sz | ++ -+ | Sp1 = Su ||
<a™ [lug || +a™ ug || 4o+ [ ug ||
= (@™ 4+ a™ ™) | ||

<(Oén+1+06n+2+"'> || U ||
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then,

an—l—l

| S — Sn ||= | wo ||, for n,me N,m>n (2.2.2)

1l —«o

Since o < 1. From (2.1]), the sequence {S,}3yis a Cauchy sequence in the Hilbert
space. Hence,

limy_s00Sn = S, forS € H

where S =Y 07 ju. Solving is the same as solving the functional equation

N(S +wy) = S; by assuming that N is a continuous operator we get

N(S +up) = N(lim (S, +up)) = lim N(S, +up)) =1lim S, 1 =S

n—o0 n—oo

so S is the solution of .

2.2.1 The Convergence order of ADM

The order of convergence of the ADM was discussed by Babolian and Biazer[11].

Definition 2.1. [11] Let S,, be a sequence that converges to S. If there exist two
constants p and ¢, c € R, p € N, such that

: Spt1 — S
lim |

Jim | g = (2.2.3)

then the order of convergence of S, s p.

To determine the order of convergence of S,,, consider the Taylor expansion

of N(S,, + u,) around the point (S + u,):

1
N(S, +u,) = N(S + 1) + N'(S + u,) (S, — ) + EN”(S + o) (S — 8)* 4 - - -
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1 m m
NS 4 ) (S = S)" + -

1
N(S, +u,) — N(S +u,) = N'(S + up) (S, — S) + 5N”(S+uo)(5n — S 4.

1
+%NW(S + ) (S — )™+ - (2.2.4)
Since N(S + u,) = S and N(S,, + u,) = Spt1, so (2.2.4) becomes

1
Sni1 =8 = N'(S + o) (Sn = ) + 5 N"(S + 1) (Sp = §)° + -+

1
+%N’”(S + 1) (S — )™+ - (2.2.5)

Theorem 2.2. [7]] Suppose N € C?[a,b] if N™(S+u,) =0 form =0,1,2,...,p—1
and NP(S + u,) # 0, then the sequence S,, is of order p.

Proof. By the hypotheses of theorem, from we have:

1 1
Spi1— S = HNP(S + 1) (Sp — S)P + mN?’“(S + U,)(Sp — S)PT + - (2.2.6)
By dividing both sides of this equation by (S, — S) we get

Spy1—S 1 1
(SH__S)p = (S Huo) + GV U (S = S) e (2:27)

Then we take the limit as n — oo to both sides of equation

Spe1— S . 1 ) 1
n—00 (S+1— S)p |: nlggo ENP(S + Uo) + nhﬁr{olop—k UNP‘H(S + U,O)(Sn — S) + (228)

Since limy,_00(Sy) = S then every terms that has (S, — S) will be canceled so at the

end we have

. Sn—‘,—l - S ERRT ]- .
nh—>nc}o | m |— nh—>nc}o HNP(S + UO) =C (229)

so by definition [2.1] the order of the sequence is p.
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2.3 Some Modifications Of ADM

In this section, some modifications of ADM are presented [34], ?].

2.3.1 Modified Adomian Method

Power series solutions of linear homogeneous differential equations yield sim-
ple recurrence relations for the coefficients, but they are not suitable for nonlinear

equations in general. Consider the result from [8, [34]

chx ZxA COyCly vy Cn)

n=0

from the recent theorem of Adomian and Rach on transformation of series and A,, are
Adomian polynomials. Since ADM gives solutions of the general equation u — Nu =
f using his decompositions © = > 7 ju,, and N(u) = Y2 Ay (ug, ur, ..., uy,). Ifu
is given as power series u = Y~ ¢,z", by identifying each component u,, of u with

the component ¢,x™ of the power series, this gives
Ap(ug, ug, ug, . .. uy) = 2" Ap(co, €1, ¢y o Cp) (2.3.1)

If we return to the formula(2.1.10)) and finding the Adomian polynomials by substi-
tuting each component u,, with the component ¢,x™ of the power series we get
Ao(ug) = N(ug) = N(coz®) = N(co) = Ap(co)

Ay (ug,uy) = usN'(ug) = 12 ' N'(cp2°) = 2tei N'(cp) = 2 A1 (co, 1)

As(ug, ug, ug) = us N'(ug) + g—?N"(uo) = cu2*N'(coa®) + (Clm ) LN (cox?)

= 2%coN'(co) + 332%]\7”(00) = 1%(caN'(co) + %N”(Co)) = 22 Ay(cy, 1, C2)
As(ug, uq, ug, u3z) = ugN’(ug) + MN”( 0) + ﬁN’”( 0)

= 03:103]\7/(00%0)—1-%]\7”(0 T )+(Clm S N"(coz®) = x%;;N’(c@%—%N”(co)—i—
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—(613’!3)3 N"(co) = 3[esN'(co) + 242 N"(co) + %N’”(CO)] = 23 A3(co, c1, Ca, C3)

then by mathematical induction we can get relation (2.3.1)).

If the series )~ c,x" is convergent then the series >~ a"A,(c1,¢ca,...,Cpn) 18
convergent.

We will show how can we apply this modification in example at the end of this

section.

2.3.2 Wazwaz Modifications

Another modifications to ADM was proposed by Wazwaz[40), 8, 9].

The New Modification

In the new modification Wazwaz replace f = L~ 'g by a series of infinite

components.
o0
f=2_ fn
n=0

So the new recursive relationship is presented in the form
up = fo

Upi1 = fn — L 'Ru, — L™Y(A,), for n=0,1, 2,---

The benefit of this method is the size of calculations is minimized compared to stan-
dard ADM and this reduction facilitates the construction of Adomian polynomials

for nonlinear operators.
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Reliable Modification

This method is based on splitting f into two parts f = fo+ f1. Consequently,

the recursive relation
Ug = fo
Uy = fl - L_IRUO - L_IA()
Upio = —L ' Rupiy — L7 Apyy,  for n=0,1, 2,

Since this variation is not very large but it plays a major role in accelerating the
convergence of the solution and it minimize the size of calculations. The success of

this modification depends on the choice of fy and f;, and this come from trials.

2.3.3 Two-Step Adomian Method

The main ideas of Two Step Adomian Method (T'SADM) was discussed in
[40], 8, 9] and the two steps are written below:

Stepl: Using the given conditions, we obtain
d=0¢+L g

where the function ¢ represents the terms arising from using the given conditions,

all are assumed to be prescribed. We set
=0y + Dy +---+ D,

where &g, ®4, ..., P,,are the terms arising from integrating the source term g. We
define
ug = Pp+ -+ Ppys
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where £ = 0,1,...,m, s = 0,1,...,m — k. Then we verify that u, satisfies the
original equation and the given conditions by substitution, once the exact solution
is obtained we finish. Otherwise, we go to step two.

Step2: We set ug = ® and continue with the standard Adomian recursive relation
Upny1 = —L71(A,).

Compared to the standard Adomian method and the modified method, we can see
that the two-step Adomian method may provide the solution by using one iteration
only. Further, the (T'SADM) avoids the difficulties arising in the modified method.
Furthermore, the number of terms in ® namely m, is small in many practical prob-
lems.

The example below will be solved by the standard ADM, modified Adomian method,
the new modification, reliable modification and Two-Step Adomian Method. This
example will show how these modifications of the Adomian decomposition method

give the exact solution with iterations than that found by using the standard method.

Example 2.3.1. [9] Consider the equation
Yy — vy = xcos(x) — xsin(x) + sin(x), (2.3.2)

subject to the initial condition y(0) = 0.
Standard ADM
In this example L = % so rewrite in operator form

L(y)=Ry+yg (2.3.3)

Where Ry =y is the remainder linear term and g = xcosx — xsinx + sinx.

Applying L™ = [(.)ds to both sides of equation W

L7'Ly) =L 'Ry +L™'g

/ (y)ds =y(s) [;=L "Ry +L7'g
0
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y —y(0) = L™ (y) + L' (z cos(x) — zsin(x) + sin(z))
then,
y—y(0) = /Ox y(s)ds + /Ox(s cos(s) — ssin(s) + sin(s))ds (2.3.4)

to find the integral [;(scos(s) — ssin(s) + sin(s))ds we use integration by parts
Jy (scos(s) — ssin(s) + sin(s))ds = ssin(s) [§ —cos(s) [§ +scos(s) [§ —sin(s) |§
+cos(s) 5= xsin(x) — cos(z) + 1 4 z cos(x) — sin(z) + cos(z) — 1
= zsin(x) + x cos(x) — sin(z), and substituting it in to get

y = L™ (y) + xsin(s) + z cos(z) — sin(x),

substituting the decomposition series y(x) = > " yn(x) in equation above

Z yn(z) = L’l(z Yn(x)) + xsin(x) + x cos(z) — sin(x)
n=0 n=0
Thus the recursive relationship is given as follows
Yo = zsin(s) + x cos(x) — sin(x)

Ynt+1 = L~ (yn)

Then the first three terms are( all the following integration are found by using inte-

gration by parts):

T

n= L) = [ sints) + scos(s) — sints))ds
— _zcos(x) + sin(z) + wsin(x) + 2cos(z) — 2

v = L\ (yy) = /0 *(—scos(s) + sin(s) + ssin(s) + 2 cos(s) — 2)ds
— _asin(z) — 2cos(x) + 3sin(x) — x cos(x) — 20 + 2

ys = L (y2) = /0 (—ssin(s) — 2cos(s) + 3sin(s) — scos(s) — 2s + 2)ds

=z cos(w) — 3sin(x) — xsin(z) — cos(z) +2x — 2> + 1



2.3. Some Modifications Of ADM 17

thus,

Y=Yty +Y2t+ys+---

= xsin(z) 4z cos(x) —sin(x) — x cos(x) +sin(z) + x sin(x) 4+ 2 cos(x) — 2 — x sin(x) —
2 cos(z) 4+ 3sin(x) — z cos(x) — 22 4+ 2+ x cos(z) — 3 sin(x) — x sin(z) — cos(x) + 2x —
22414

after many iterations, y = xsin(x) will be the solution of example and the
other terms are canceled with each other.

By Modified Adomian Method

Assume that y,, = ZZO:O cpx™ and g = rcosx — xsinx + sinx = ZZOZO b,x™. Substi-

tuting these values in

Z ez =y(0) + L_l(z Cpx™) + L_I(Z bna™). (2.3.5)

Since L™ = [7(.)ds, then

xn—i—l

L_l(i cpa™)ds = i /Ox(cns”)ds = icnn 1

Therefor, equation(2.3.5)) is given by

o0 [e.9]

(bn + cn)
n __ n+1
it = y(0) + (30 S,
n=0 n=0
then,
> = (b1 +
3 e = y(0) + (30 Lt ) oy
n=0 n=1
the recursive terms are given by
Co — y<0> =0
Cn+1 — bnfljl'cnfl )
Taylor series expansion of g is
. ' - -
g:xcos(x)—xsm(x)—l—sm():x(l—a—i-z—l— )—x(x—a—l—y— )
3 5 e 4 Gy 6
e T T gy M @ 6 g
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By considering the assumption g = > -

n=1

b,x™ and by matching the terms of this

assumption with the opposite terms from above equation we get

bp =0
by =1
by = —1
-
-
-

so to find the terms of y(z), we need to determine the ¢, ’s

b 0
b1+01 240
bg-’-Cg —l—l—l
_bg+03_—4/3‘_ 1
“TT T T4 T
b —1/64+1/6
Cs = 4:;04 /;_ / =0
“T7%6 T 6 5

the exact solution s

oo
y(x) =307 cpa™ = co + a1 + cx® + ez + caxt + c5a° + cga® + - -

:0+O—|—x2—g—?+“§—?+---:x(m—§—?+§—f—--~):xsim:
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By Reliable Modification

let fy = xsin(x) and fo = x cos(x) —sin(x), then the first two terms of y, ’s are given
by
Yo = f1 = xsin(z)
Y1 = fotr L (o) = xcos(a:)—sin(x)—i—/x(s sin(s))ds = x cos(x)—sin(z)—x cos(x)+sin(z) = 0
0
Then yni1 =0 forn=1,2,3,..., so the exact solution is y(z) = xsin(z)
By The New Modification

Since f(x) = zsin(x) 4+ x cos(x) — sin(z), Taylor series of f(x) is

203 2t 42b 2
P— 2 —_— e — — —_— — s e e
J@)=a=gr =gt 5t 5
so the recursive relationship is
Yo = fo(z) = a?
223 v
vy = fi(z)+ Ly = e +/ (s*)ds
‘ 0
203 23
=Tty =0
1'4 T
Yo = folx) + L'y, = 3 —i—/ (0)ds
- 0
7
]
42° v
ys = fa(x) + L7lyo = 51 +/ (s*/3!)ds
- 0
4x° x°
5 T 5x3l 0
50
zt b 2 2P ,
y(m):x2—§+g— —x(a:—a—i—g— -) = xsin(x)
By TSMADM

From the integration of g(x) = xz cos(x) — zsin(x) + sin(z) we get ¢ = xsin(zr) +
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xcos(z) — sin(x) so let ¢ = ¢o + ¢1 + P where ¢g = xsin(z), ¢1 = xcos(z) and
¢o = —sin(z), each of them satisfies the initial condition y(0) = 0 so if we choose
®o = yo(x) we get the exact solution because y(x) = xsin(x) satisfies the initial value

problem described in example(2.3.1).



CHAPTER 3

Applications on ADM

The ADM gives the accurate and efficient solution for wide class of linear
and nonlinear equations without the need to resort to linearization or perturbation
approaches. In this chapter we will show firstly how ADM can apply to solve linear
and nonlinear initial value problems of ordinary differential equations, boundary
value ordinary differential equations and system of ordinary differential equations.
Then we will use the ADM to find the solution of partial differential equations of
first order, second order especially heat and wave equations and equations of higher
order. At the end of this chapter, we will give examples of solving integral equations

with ADM.
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3.1 Ordinary Differential Equation

In this section we will apply the ADM to linear and nonlinear ordinary dif-
ferential equations]2]. Consider the nonlinear first order initial value differential

equation

v+ Nu+Ru=g

u(zo) = co (3.1.1)

Where N is the nonlinear term, R is the remainder linear term and ¢ is a given

function. In this caseL = L so L™! = f;;(.)ds, for 1' take L' to both sides
L'Lu=L"'"9—L"'Nu—L'Ru

/ (u')ds = L 'g— L"'Nu— L' Ru

Zo
u(z) —u(rg) =L 'g— L 'Nu— L 'Ru
u(z) = u(wo) + L™'g — LT'Nu—~ L™ Ru (3.1.2)

The ADM gives the solution u as an infinite series u(z) = >~ ju,(z) and the
nonlinear term Nu = >~ A, where A,’s is the Adomian polynomials. So (3.1.2)

become

i Uy = u(zg) + L 'g— L1 i A, —L! f: Ru,,
n=0 n=0 n=0

From this equation we can get an algorithm to find the values of u,’s as follows

uy = u(xg) + L'y

Upi1 = —L (A, + Ruy,), n=0,1, 2,
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3.1.1 Second Order initial value Ordinary differential equa-

tion

In this section we will use the ADM to solve initial value ordinary differential
equation of second order and then we will give generalization to solve initial value
ordinary differential equations of any order [2].

Consider the initial value differential equation in Adomian method operator

Lu+ Nu+ Ru=g

u(xg) = co, U (x0) = 1. (3.1.3)

Where L = d L and so L f f .)dsds. By applying L~ to both sides of (3.1.3

we have

L' Lu(x / / " dsds—/ (u'(s) — u'(xo))ds = u(s) |3, —u'(w0)(s) |3,
= u(x) — u(wo) — u'(zo)(x —20) = L 'g— L"'Nu— L' Ru
then,
u(z) = u(zo) + v (wo)(x — x9) + L g — L™'Nu— L' Ru (3.1.4)

Substituting u(z) =Y 07 u,(x) and Nu =Y 7 A, in (3.1.4) to obtain

Z Uy, = u(wg) + ' (2)(x — 20) + L 1g — L7} Z A, — L1 Z Ru,

n=0 n=0 n=0

Then the w,’s terms can be found by using the following recursive relationship

up = u(zo) + u' (zo)(x — m0) + L7'g

Uppy = — L7 f: A, — L1 i Ru,,
n=0 n=0
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Example 3.1.1. (Anharmonic Oscillator)[3] Consider this equation

d?0
=t k*sinf = 0 (3.1.5)

with k* = w/l where w is the angular frequency and | is the largest amplitude of

motion. Assuming 6(0) = ¢ and 6'(0) = 0 so (ref26) in operator form is
LO+ N6 =0 (3.1.6)

where L = % and NO = k%sinf) so L™! = fot fot(.)dsds. Apply L™t to 1) we

have

L0 = /0 t /0 0y drdr
_ /Ot o(r) |l dr
A GR
=0(r) |5 =0'(0)7 | LT'LO+ L™'NO = 0(t) +6(0) +6'(0)(t) + LT'NO =0
s0, we get
0(t) = 0(0) + 0'(0)(t) — L' N6 (3.1.7)

Adomian decomposition method assume 0(t) is decomposed in infinite series 0(t) =
Yo o bn(t) and NO = 3" A,. By substituting these series and the initial condi-
tions 6(0) = ¢ and 6'(0) = 0 in (3.1.7) we have

Z@n = c—L_IZAn
n=0 n=0
define 0y(t) = ¢, so the other terms are
Opi1(t) = —LtA,,n=0,1,2,... (3.1.8)

To get the values of A, ’s we use the Adomian’s formula (2.1.10) then we can find
0, terms from[3.1.8. The first three terms of A,’s and u,’s are
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Ao = N(6) = N(c) = kzsin(c)
= L7 g = = J} [y (0sin(e))dsds = ~Ksin(c);
A = %di[ (Bo + 010\ ] a=
= %[k sin(0y + 91/\)],\:0
£ [k2sin(c — k?sin(c)(t*/2)\)]a=o
= K2cos(c — kL sin(c)A) * (—k%sin(c) L) |x=o

= —k'cos(c)sin(c)L

Oy = —L 1A, = —fo fo —k*cos(c)sin(c )%)dsds = k4008<0)3m(c>§
Ay = %J“—;[N(QO + 61X + 050 A=0

5z [k sin(c — K2sin(c) 5 A + kcos(c)sin(c) 5 0?)]x=0

1d

2

i [k2con(c — k*sin(c)(t? /2) X + k*cos(c)sin(c) 5 )\2)( k%sin(c)*

2
2

&

+ 2k*cos(c)sin(c )ﬁ Aa=o

= L[—k%sin(c)t x —k%sin(c — KL sin(c)\ + 2k*cos(c)sin(c) 5 \) * (—k2sin(c)s +
2k cos(c)sin(c) L N) +k2cos(c—k?sin(c) EA+E cos(c)sin(c) N # 2t cos(c) sin(c) & +
cos(c)sm(c);—zlx\ * —k2sin(c — l{:zsm(c)%)\ + kicos(c)sin(c) 24)\) * ((—l{:Qcos(c) +
cos(c)sm(c)t— ) Ia=o

R+ oo

O =—L 1A, = —fo fo (—KkCsin3(c) %
= 3]{;632'713(0)% — kbcos®(c)sin(c )775—

= 3kSsin®(c) & — kScos?(c)sin(c) s

+ kScos?(c)sin(c )S—4)dsd3

thU89:91+92+93+"'
Generalization:
Consider the initial value problem of order n in Adomian method operator form
Lu+ Ru+ Nu=g (3.1.9)

with initial conditions

u(0) = ¢
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uw'(0) = ¢
u”"(0) = ¢y
U/”(O) — ¢y

u™D(0) = ¢,y

where L = Cji—nn is the linear operator of order n, N is the nonlinear term, R is the

remainder linear term and ¢ is the source function of x. The inverse operator is

le///---/(.)dsdsds---ds
o Jo Jo 0

Take L~! to equation(3.1.9) in order to get

given by

u—¢=—L""Ru+ Nu)+ L 'g (3.1.10)

where ¢ is determined from the initial conditions

u(0), = %,
w(0) + 24/ (0), =<,
¢ =< u(0) + zu/(0) + Lu"(0), L=,

n—1 dn+1

u(0) + zu/(0) + Zru’(0) + -+ + Emu=D(0), L= £

\

From the algorithm of ADM u =Y ju, and Nu= )~ A,. Eq becomes
iun =¢+L'g— L‘l(Riun) - L‘l(i A,)
n=0 n=0 n=0
The general algorithm to find the solution of initial value problems with any order
by using ADM is
up = ¢+ L7,

Upi1 = —L ' (Ru,) — L7Y(A,). n=0,1, 2
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3.1.2 Second order Singular Initial Value Problem

In this section an efficient modification of ADM is introduced for solving
initial value problem in the second order ordinary differential equations|21].

Consider the general equation of second order singular initial value problem

2 1
y"+?ny,+%?/+N(w,y)=g($)- n=01,2--  (31L11)

with initial conditions

where N(z,y) is nonlinear function, g(z) is given function and « and § are real
constants. In this problem we use the new definition of the differential operator

L= x_"@x_"y (3.1.12)

and its inverse is

L_lzx_”/ / s"(.)dsds
o Jo

If we apply the differential operator defined in (3.1.12)) to the function y we get the
left hand side of (3.1.11))

L —-n d2 -n -n d ( n—1 4 n /)
=X —X = — (N X
Y du? ) d ) Y

— xfn(nl,nflyl 4 n(n o 1)1,71721/ + nxnfly/ + xny//>

n n(n—1 n
:_y/_i_#y_i__y/_‘_y//
T T T

n(n—1)
2 Y

2n

:y//+_y/+
x

so (3.1.11) in Adomian operator form is



3.1. Ordinary Differential Equation 28

Take L~ to both sides of equation above

N _ 2n n(n —1 _ _

the left hand side of this equation is

9 1) 1
L*@%w§y+“” / /3 /+E%le%%

0 0

/ / "y 4+ 208"y + n(n — 1)s"y)dsds

using integration by parts to find fom(s”y” )ds let

u=s" dv =1y"
du =ns"! v=1
so [ (s"y") =a™y —n [ (s"'y)ds and the same for [;(s"y/)ds
let
u=s""! dv =1y
du= (n—1)s"? v=1y

so [F(s" ) = a" "ty — (n— 1) [;(s"2y)ds, thus by substituting these integral
values we get
™ 5 fS (™Y 4 2ns" Ty 4+ n(n — 1)s"%y)dsds
=a " [J[s"y —ns" "y +n(n—1) [ (s"2y)ds
+2ns" "ty — 2n(n — 1) [/ (s"2y)ds + n(n — 1)s"2ylds
=27 [J(s"y 4+ ns"y)ds
— amnsny(s) 5 —n v yds 4 J7 s yds) = 2 y(s)] 5= () — y(0)
=y(@) —a
so equation([3.1.13) becomes

y(x) —a =L 'g(x) = L7'N(z,y)
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Assume that y(z) = > 0 y, and N(z,y) = >~ A, where A,’s are the Adomian’s

polynomials so

Zyn—a+L g(x ZA

The recursive scheme to find the solution is
Yo = a+ L 'g(x)
Yns1 = —L7'A,. n=0,1,2,....
Example 3.1.2. Consider the nonlinear singular initial value problem
" 2 ! 3 6
Yy +5y +y' =6+ (3.1.14)

with initial conditions

Ly = g(x) — N(z.y) = (6 + 2°) —¢* (3.1.15)

1 .d? o g -1 _ -1
22Ty and its inverse L fo fo )dsds.

Applying L= to both sides of (3.1.15)) and from the previous section
L™'Ly = y(x) — y(0)

In this example n = 1 so L = x~

y—y(0)=L6+2% - Ly (3.1.16)

the value of L™(6 + x°) is

L7(6 + %) // (6 + s%)dsds

=z /0(38 + 8)d

9 8

+_

= (s" +72) lo= 7
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So after substituting the values of L™(6 + 2°), the initial condition y(0) = 0 and

using the assumptions of Adomian method Nu =" A,, (3.1.16)) becomes

Zyn = 12 + % - L_l(ZAn)
n=0 n=0

Using Wazwaz reliable modified method of ADM we have fo = 2 and f; = % a

from the equation (2.1.10)) we get the following solution algorithm

LES

n :__L_lAn, - 1 2,
Yn+1 79 ( ) n 07 )

then the first term is
y1 = & — L7 (Ay), since Ag = N(yo) =y =

and so

9 8

L7 (Ag) = a7t fox foac s(s%)dsds =z~ fox %ds = x_l(%) 6= %

Thus

8l

n=m ="

then all recursive terms are equal zero. The solution is y(x) = x*

3.1.3 Boundary Value Problems

nd

In this section, we apply the ADM to obtain numerical solution to nonlinear

boundary value problem|[2].

Example 3.1.3. [2] Consider the following nonlinear sizth order boundary value

problem:

u®(z) = e u?(2), 0<zr<l (3.1.17)
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with boundary conditions
u(0) = u"(0) = u™®(0) =1
u(l) =u"(1) = u®(1) = e
Solution:

Rewrite (3.1.17) in Adomian method operator form

Lu=e¢""Nu (3.1.18)
where L = % and Nu = u?(x). Applying

- :/ / / / / /(.)dsdsdsdsdsds
o Jo Jo Jo Jo Jo

to both sides of (3.1.18)

L' Lu= L '(e*Nu)

/ / / / / / ) )dsdsdsdsdsds = L™ (e =" Nu)

/ / / / / d—;; - ))dsdsdsdsds = L7 Y(e " Nu)
fud'u(0)  du(0) R
/ / / / @— 9[:4 ST Ydsdsdsds = L™ (e *Nu)
Su 0) d*u(0)  s* d°u(0) DR
/ / / pri el S N Ydsdsds = L™ (e"*Nu)
“u ) dSU(O) s? d*u(0)  s° d*u(0) 1g,-
- — =1L *N
/ / dx? s dx? 2 dat 6 dr’ Jdsds (e u)
du  du(0) d2u( ) s2d%u(0)  sPd'u(0) ' d’u(0) L
o - 5 . ds = LY (e* Nu).
/ (dm dx dx? 2 da? 6 dat 24 dzb )ds (e u)
Then,
w(z) — 1 — e — 02—3x2 %x?’ - ;—Zfl - %601‘5 = L' e "u?(z)]  (3.1.19)
where ¢; = u(0), ¢y = dzgco); cy = dz;go), Cy = dzz(go), cs = d?ﬁ)) and cg = nggo).

So from the given boundary conditions for equation(3.1.17) we can find these values
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61263205:1

and for the other unknown constants co = «, ¢4 = B and cg = . Thus (3.1.19)

becomes
u(z) =1+ az + Lol Loy 0 o [e™"u?(z)] (3.1.20)
2 6 24 120
From ADM u(z) = Y7 jun(z) and Nu =" A,. Substituting in (3.1.20)

N — B s i o7 —
Zun(a:)—1+ax+§m + 5T +24 +120:1: + L7 e Y A

The algorithm to find u is (also by using Wazwaz reliable modified method of ADM

we have fy =1 and fi = ax + 32% + Ba® + Lat + La®) then

Uy — 1
U = ax + x+ﬁx3+ ‘o 791:+L Hem™ Ag)
2 6 24 120
Uppr = L e ™ u2(z)], n=0 1,2 3, -

Using the Adomian formula to obtain A, ’s polynomials we have

A():N(U[)):U(Z):]_

then
L e ™Ay =L e ™ ////// *)dsdsdsdsdsds

Ty T 1
+120 24+ 6 2 “3

substitute this in u; we get

3 5

xr xr
=1 1 1)=— 1) 4¢e°
Uy +(a+ Dz + (B+ )6 + (v + )120+e

If we approzimate the solution by using the only these two terms ug and u;.

3 5

u(@) = ug+ur = (a+ D+ (B+1) % + (7 + D55+
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By using the Taylor expansion of e =1 —x + z—? — ’g—? + -+ in the formula of u(z)
we have the final approximation formula of u(x)

2 3 4 375

x
o -1 T e T N
u(x) = up + uy +a:v+2!+66+24+7120+

to find the values of a, 5 and v we use the boundary conditions at x = 1 and putting
it in the formula of u(z) then

u(l) =1+a+3+(1/6)(8) + (1/120)y + - =, 1
W) =a+r+822+ 2 4 2ot =e

w(z) =1+ (B + % + 1 + ..

=u'(1)=1+B)+5+3+ - =e, 2
u"(z) = (B) +a+ g2+
uP@)=1+Y)z+-=u" 1) =1+")+ - =e¢, 3

from 3 we can find the value of ~
vy=e—1=1.71828183

Then from 2 we find
f=e—1—31_ LTSI _ (93190153

2 6
finally o = e — %25‘183 —1-05— w = 1.00697924
Thus

u(z) = up +uy = 1+ 1.00607924x + L + 093190153 + £ + 1.71828183 25 + - --

3.1.4 Singular Boundary Value Problems

In this section, we will consider differential equations which possess a singularity[2]

30].
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Consider the general singular boundary value problem which has the following form

y(n+1) + %y(n) +q(x)N(y) =g(x), 0<z<b (3.1.21)
y(O) = Oy, yl(O) = o1, y//(O) =aqQg, ",
ynfl(()) =a, 1,y(b)=8 n=0,1,2---

where N(y) is the nonlinear term, g(x) is a given function. In order to apply the

ADM, let’s first write (3.1.21)) in Adomian operator form

Ly +q(z)N(y) = g(x) (3.1.22)
where L is given by
dr d
L — -1 = 14+n-m = _m-n ) 12
T o o (.) (3.1.23)

if we apply this operator to y we get

Ry

Ly==x dxnx“r"_m%(xm_”y)
dn
— x—lﬁxl—kn—m[(m _ n)xm—n—ly + xm_”y']
S a
=z 1%[(7” —n)y +zy]
L dnfl
= —omplm = n)y + 2y + ]
L dnfl
=17 o oglm —n+ Dy + zy"]
dn72
— aj—ldxn_2 [(m —n+ 2)y// 4 xy///]
M =1

= oy ™ +my" V] = [y + —y

The inverse of L is given by

L™t ::L’"_m/b sm_”_l/o /0 /0 s(.)dsds - --ds (3.1.24)



3.1. Ordinary Differential Equation 35
applying L™! to both sides of (3.1.22)
L7'L(y) = y(z) — ¢ = L™ (g(x) — q(x)N(y)) (3.1.25)

where ¢ can be determined from the initial conditions. Use the assumptions of ADM

(13.1.25)) becomes
D g =0+ L gle) — L [g(x) Y A,
n=0 n=0
Thus the recursive relationship is
yo(z) = ¢+ L7 g(x)
Yn+1 = _L_l[Q(m)AnL n = 07 17 27 37 Tt
Example 3.1.4. [2] Consider this third order singular BVP

2
y”/——y”:y—|—y2—|—7$26x—|—61‘6w—6€x—|—$662x
x

In this problem n =2, m = -2, b=1 and N(y) = y*so

d? d
L — -1 > 57
o dex dx

L1:w4/ 55/ / s(.)dsds
1 o Jo

z7()

and its inverse s

(3.1.26)

(3.1.27)

(3.1.28)

if we apply the differential operator L that is defined in (3.1.27)) to the function we
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obtain the left hand side of (13.1.20)

2
Ly =2 a® Lamiy)
d2
=z 1 o 2[(—4)z Py + 2]
@
dx?

d
— -1 7 —4 / " /
27 (=Y +ay” + ]

d
— 1 _ / "
2 _dx[( 3)y' + xy"]

— l'_l[(—Q)y” + xy///]
1" 2 "

=y =Yy
x

[(—4)y + xy]

applying L= to the operator form of (3.1.28))
L7'Ly = L7 (y + N(y) + 72" + 6ze” — 6e” + 25¢*)

the left hand side

2
L lLy_L l(y//l__y

—x/ // ’”— "dsds

using integration by parts to the first term

n

du = ds v=1y"

L[‘OZES(y///) — Sy// |g _y/ |£: Sy// _ y/ _|_ y/<0)
L= 'Ly = 2* flx x 0 fox[sy” —y +9(0) — 2y + 2¢/(0)]ds
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we use the same technique as above for first term
Ly =t [ s =y 0) =y 0) 4 59/0) — 2 2
=z /x [s7%y' — 4s 5y + 4y(0)s > + 3574/ (0)]
1

=ty sy [ty s -y 050 I
=y —a'y(l) =y — 2.71828xz*

after substituting the initial condition. Then, we have this relation

y —2.71828x" = L' (y + y* + 72" + 6xe” — 6e” + 2%*")
Use the assumptions of the ADM

Z Y, = 2.71828z" + L_l(z Yn + Z A, + Tr2%e® 4 6xe® — 6e° + ZE662$)

n=0 n=0 n=0

Thus the recursive relationship s

yo(z) = 2.718282% + L™ Ta%e” + 6we” — 6e” + 15

yn+1:_L71[yn+An]7 n:()a 17 27

3.1.5 System of Ordinary Differential Equations

In this section we illustrate how the AMD is used to solve a system of first
order ordinary differential equations|12].

Consider the system of equations:

/
ul +N1<£U,U1,U2,"' 7un) =01

/
Uqy + N2<x7ulau27 tee 7un) = g2

u/n—i—Nn(x?ulqua'” 7u77») = 9n (3129)
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where Ny, No, ..., N,are nonlinear functions, g1, go, . . . , g, are known functions. Rewrite
(3.1.29) in operation form:
Lu; + Ni(z,ug,u, .o yun) =g, =1, 2,-+-, n (3.1.30)
Where L is the linear operator L = % and has an inverse L™! = foz(.)ds. Applying
L~ to equation (3.1.30) gives
/ ( Y Yds + L' Ny(w,uy, ug, -+ up) = L lgs,  i=1,2,---,n
0

dz
ui(2) — u;(0) + L7 Ny(2, uy, ug, -+ up) = Llgs, i=1,2,---,n  (3.1.31)

The Adomian technique consists of approximating the solution of (3.1.31)) by an

infinite series
o0
Ui = E Ui,
Jj=0
and the nonlinear terms
o
Ni(l‘, Uy, Uz, * - 7un) - E Ai,j(ui,()? Ui, 7ui,j)
J=0
where A; ; are the Adomian polynomials. Thus (3.1.31f) become

S uiy = wi0) = S L7 A j(wig wi, - uig) + LNgii = 1,2, 0 (3.1.32)
=0 =0

then we define:
uio = ui(0) + L7y,
Uinp1 = =L Ay (wi0, wi, -+ i)
n=012--- andi=1,2,---

Example 3.1.5. [12] Consider the following nonlinear system of differential equa-

tions
I 2
Uy = 2u;
uy = e Ty
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with exact solutions ui(x) = €**, us(x) = € and uz(z) = we®.

Applying L™ = [[(.)ds to both sides of .'
uy — up(0) = /fﬁ 2u3ds
0
ug — uz(0) = /Ow e *uyds
ug — uz(0) = /0$(u2 + ug)ds (3.1.34)

from AMD assume that w; = Y~ u;,(z) where i = 1,2,3 and from the first

equation of (3.1.33|) the nonlinear term is
No(@, uy, ug, ug) = u3 =y ooy Ao . Substituting these values in ([3.1.34)

i U p(z) =142 i /x Ay nds
n=0 n=0 0
i Ugp(z) =1+ i /f’f e *uy nds
n=0 n=0 0
> tgale) = 3 [ s+ uz)ds
n=0 n=0 0

This leads to the following scheme:
uo=1 uppt1 = 2/90 As pds
0
U =1 Ugpi1 = /»"5 e "uy pds
0
usp =0 uzpi1 = /Ox(u;;,n + Uy )ds

wheren = 0,1,2,---. In order to determine A, ,, we use the Adomian’s formula.
Then the first two iterations of approximate solutions of the system above are for

n =20,

uyy =2 [y Agods

Agp = Nz(uz,o) = (U2,0)2 =1

then uyq = 2 foz lds = 2z
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U1 = fox e *uy pds = fo‘r e %ds=—e*+1
usy = [y (usp + ugp)ds = [ 1ds =«
form =1,

Uy g = 2]090 Ay qds

Ag 1 = 575 [Na(ugg + Aua)]rzo

= &L (ug0 + Mug1)*rzo

= %%[(UQO + )\2'&2 1 + 2)\’&2 ,0U2 1)])\ 0

=341+ X1 —e®) + 201 — e )]0

=21 —e")(—e ™)+ 2N+ 2X\(—e™™) + 2(1 — Xe ") ]r=0
=—2e"+2

then,

up =2 [ (=27 +2)ds = 4e " + 4z — 4 upp = [ e *uq,1ds
= [ e*(2s)ds

= —2xe " —2e " +2

Ug2 = fox(U3,1 + ug1)ds

= fox(s+—e’s+1)ds: %2 —e T4+ ax+1

Thus uy, us and ug are approrvimately given
U = U1,0 + Uyl + U2 = 2 + 4" -+ 4y — 3

Us = Ugp + U1 +Ugo = —€ © — 2z " —2e " +4
2

xz
U3ZU370+U371+U372:[E+?—€_$+ZL’+1
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3.2 AMD For Solving Partial Differential Equa-

tion

It known that the nonlinear partial differential equations describe very large
branches of science and engineering applications. Much research like [7, 29] 8, 40]has
been worked to get numerical solutions of these types of problems when they have
some computational difficulties and usually roundoff error causes loss of accuracy

but the AMD need only few computation.

3.2.1 First Order nonlinear PDE

Refereing to [7], the most general form of nonlinear first order partial differ-

ential equation in one dimension
F(u,ug,up,x,t) =0

with initial condition:

u(z,0) = f(x), Vo e Q

and subject to the boundary condition:

u(z,t) = P(x,t), Vo € 00

where € is the region of solution and 0f2 is the boundary of (2.

The following examples illustrate how can we apply the ADM to solve first order
PDEs.

Example 3.2.1. [7] Consider the nonlinear hyperbolic equation

ou ou
= y— < <t < 2.
5 =ug.  0<es<l 0<i<I (3.2.1)

with tnitial condition:

u(z,0) = 5, 0<z<1
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The exact solution of this problem s

x
t) =
u(®,t) = 75—
Solution using ADM
Rewrite (3.2.1)) in operator form
Liu= Nu (3.2.2)

where Ly = 2 and its inverse is L;" = fg(.)dT and Nu = u%. Applying L;" to

.
both sides of (3.2.2)) we obtain
L7'Lyu = L' Nu

' ou t ~1
/0 (G)ir = ula,7) = L Nu

u(z,t) — u(z,0) = Ly ' Nu
then,
u(z,t) = u(z,0) + L;'Nu (3.2.3)

after that substitute u(z,t) = Y " un(x,t) and Nu = > A, and the initial
condition u(z,0) = & in (3.2.3)

10
ioun(x,t) = %+LtlioAn

Thus, the recursive scheme s
(z,1) =
up(x,t) = —
0\ 10
Upyi(7,t) = L' A,, n=0,1,2 3

to determine the Adomian polynomials A, ’s we use the Adomian formula(2.1.10)).
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Where Nu = u%, so the first four Adomian polynomials and series terms are

ou r 1
AO = N(Uo) = UO—D

or 1010
t
-1 T xt
Ulth A02/0<1—()2)dT:1—()2
1 d 1d O(up + ug )
A1 = FE[N(UQ + 'LL1>\)]/\:0 = Fa[('&o -+ ul)\)T])\zo
_i[(£+x_t )(lJrL)] _i[iJr@Jr@Jr)‘%t]
T 10 10277M0 T 10270 T a0z 103 o103 T 100 M0
et et 2ty 2t
“ho3 103 T 10t MY 103
toxT xt?
_7-1 _ _
UQ—Lt Al—/o(l—og)dT—l—OB
1 & ,
A2 = EW[N(UO + ul)\ + UQ)\ )])\:0
1 d? O(ug + Ui\ + us\?
= EWKUO—’—Ul)\—f—Ug)\Q) ( 0 51' 2 )])\:0
1 & . x xt xt? @(1+x—t2)\+w—t§)\2)
e L W LI AN TR T 10 B
el T et ) Oz h=o
B 3xt?
10t
t 3p72 xt3
S I _
'LL3—Lt AQ—\/{;( 104 )dT—1—04
1 @ 9 3
3 = gﬁ[N(UQ +U1)\ +U2)\ +U3>\ )])\:0
1 & O(ug + A\ + ugA? + ug\3
= gﬁ[(UO—FUl)\—FUg)\Q—F'L@,)\g) ( 0 ! 81‘2 3 )])\:0
X T x2 13
= ld_s[(ﬁ + $_t + .?Z_t2)\2 + x_t?))ﬁ)a(l_o + #)\ + #)‘2 + #)‘3)“7
31dN3°10 1027 T 103 104 o =
_ dat?
o107

b dgr? xtt
=LA, = dr = —
Ug t 3 /O ( 105 ) T 105
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Thus
u(z,t) = Zun(:c,t)
n=0

= up(z,t) + us(z, t) + ua(x,t) + us(x, t) + ug(z, t) + - - -

o 4 xt +xt2+xt3+xt4+
10 0 102 0 103 10% 0 100
x t 12 t3 4

= 4+ — 4 — 4.
10[ +10+102+103+104+ ]

the series in the brackets above is a geometric series and its sum is

o (t/10)" = 171%, then

= x/10 x
u(z,t) = up(z,t) = =
nz::o 1-— % 10 —¢
which 1s the exact solution.
Example 3.2.2. [7] Consider this problem
ou o, 1, 0u,
— = — — (= D<ax<1l 0<t<1 3.24
ot v 4(5’x> ’ = - = ( )

with initial condition:
u(z,0) =0, 0<z<1
The exact solution of this problem s
u(z,t) = x*tanh(t)
(3.2.4) in decomposition method operator form is
Liu = g(z) + Nu (3.2.5)

where Ly = 2 and its inverse is L' = [(.)dr, Nu = —1(2%)2and g(z) = 2.

Applying L;* to both sides of (3.2.5))
L;y'Lyu= L;'g(z) + L; 'Nu
' Ou t -1 -1
(5.)d7 = u(z,7) [o= Ly g(z) + Ly Nu
0 OT
u(z,t) — u(z,0) = L; 'g(x) + Ly Nu
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then,
u(z,t) = u(z,0) + L; 'g(x) + Ly ' Nu

Substitute u(x,t) =Y " un(z,t) and Nu =Y 7 A, and the initial condition in

the equation above, we get

iun(x, t) =2t + L;! iAn
n=0 n=0

Thus, the recursive solution terms are

uo(z,t) = 2%t

Unir(z,1) = LA, n=0,1, 2,--- (3.2.6)

According to Adomian formula(2.1.10)) we find these values of A,,’s and then we can
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find u,’s terms from relation (3.2.6))

1 8u0
Ao = N(ug) = —~ (22092 — _p2p2
0 (uo) 4( 833)
t
—1
u = Ly AOZ/ (—x27'2)d7':?x2t3
0
1d 1d., 1,0(u+u)
A = ﬁaw(uo + u1A)] =0 ﬂﬁK_Z(&—:c) Ja=o
d 1 2 2
= —[(—= (22t — Zat3)\))?]h = 22t
(=g (20t = 2N o = 5o
up = L; A :/t(gx274)d723x2t5
S A 15
SN W)
27 912 Up T Uz U2A™ ) [A=0
_126 _426 _5126
= a0+ b = %
T 135"
b —51 —51
:LflA: 26d:—2t7
Us = s /0(135:”) T 05"
—1
_ —7x2t7
315
N S )
37 3103 Uo T UL Uz 3 A=0
4 248 34 248 62 248
= 22 St = g%t
AT T
b 62 62
u4:L_1A3:/ —— 2?7 dr = ——2°t°
K 0 (315 2835

Thus

u(z,t) = Z up (2, 1)

= up(z,t) + ur(z, t) + ua(x,t) + us(x, t) + ug(z, t) + - - -

_ 2 17 62
2 243 245 2,7 249
S 2 D25 Ty O 20
THF @ g e ¥ oggs T
1.2 . —17 62
=2t + —t3 4+ 5 —tT + t? +.-.] = 2% tanh(t)

3 15 315 2835

which s the exact solution.
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3.2.2 Second Order PDE’s

In this section we consider the ADM to solve linear and nonlinear heat[14], 27]
and wave equations|15].

Consider the linear heat equation

ou  *u
E = @ + (](l‘, t) (327)

where 0 <z <land 0<t<T

with initial condition

u(z,0) = f(x), 0<zr<l

and with nonlocal boundary conditions

u(0,4) = [ 6(a, yu(, t)dz + g1 (1)

u(1,8) = [ d(x, t)u(z, t)de + go(t), 0 <t < T

where f(z), g1(t), g2(t), ¢(x,t)and ¥ (x,t) are given smooth functions, and T is
constant.

Using the ADM technique to solve this kind of problems gives results with high
accuracy and much closer to the exact solution or it gives the exact solution.

Rewrite (3.2.7) in ADM operator form we get
Liw = Ly,u+ q(z,t) (3.2.8)

where L, = 2 and its inverse is L; ' = fot(.)dr and L,, = 86—;2 . Take L; ! to both

sides of (3.2.8))
Ly Lou = L7 (Lygu + q(x, 1))
t
/ (%)d’r =u(r,7) o= Ly (Lozu + q(x,1))
o OT
u(z,t) — u(z,0) = Ly (Lypu + q(z, 1))
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then,
u(z,t) = f(x) + L7 (Lepu + q(a,1)).
Substituting the decomposition series u(z,t) = > 7 u,(z,t) we obtain
D un(w,t) = f(z) + L (Law Y un(z,t) + q(2, 1))
n=0 n=0
Thus, the algorithm of the solution is
uo(w, 1) = f(x) + Ly q(x, 1)
Upi1(2,t) = L7 Lygttn, n =0, 1, 2,--- (3.2.9)

Example 3.2.3. [T}/ Consider the following equation:

Ou Pu =2z +t+1)
ot Ox2 (t+1)3

where 0 <z <land 0<t<1

with initial condition
u(z,0) =
and with nonlocal boundary conditions

u(0,t fo zu(z, t)dr +

4(t+1)
u(l, foxuxt)da:+4(t+12,0<t<1
the exact solution is u(x,t) = (t+21)
We use (3.2.9) to get the solution iterations
—2(z* +t+1)
_ 2 71
u(z,t) = z” + L (t+1)°
b2(x? +7+1)
2
="+ dr
/0 (1+1)3
=2’ + /t —_2062 dr + /t —_Q(T * 1)d7'
o (T+1)3 o (T+1)3
2
_ 2 x ¢ 2 t
- +(7_+1)2 |O (7'+1) |0
2
2
- —2
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and

un-{—l(xat) = Lt_lLJunna n=, 17 27 e

form =1,
ur = Ly Lago = Ly (e = Jo (G2 )dr = 7y + 2
and
uy = L' Logur = L7H(0) =0
Thus u, =0 for allm =2, 3,---.
The final result is
2 2
u(w,t) = up +u; = (til)Q + (t—|2—1) —2+ﬁ+2:(ti—1)2

which s the exact solution of this problem.

Example 1. (Linear Heat equation with Dirichlet boundary conditions[33])

Consider the following linear heat equation subject to Dirichlet BC’s:

ou  0%*u
a—@—hU—O 0<ZE<7T, t>0,
u(0,t) =0, wu(mt)=1 t>0,
u(z,0) =0, 0 <z <(®.2.10)

where h is a constant, h > 0.
Solution: The ADM operator form of (3.2.10)) is given by
Liwu = Ly,u+ Ru (3.2.11)

where L; = %, L., = 88—;2 and the remainder linear term Ru = hu. Applying

Lot =[5 5 (dsds on both sides of (3.2.11)
L Lyau=L_'Lou+ L' Ru
/ / (g )dsds = L} Lyu + L' Ru
o Jo
/ (ug(s,t) — uy(0,t))dsds = L} Lyu + L, Ru
0

u(s,t) |y —u(0,t)s 5= L;;Ltu + L;;Ru
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then,
u(z,t) — u(0,t) — u,(0,t)xr = L} Lyu + L} Ru. (3.2.12)

From the boundary condition u(0,t) = 0, but u,(0,t) is not given we can use the
boundary condition u(m,t) =1 to get it. Using at x = m we get that
u(m,t) — ug (0, 6)7 = L} Lyu(m,t) + L} R(m, t)

uz(0,8)m = u(m, t)— [ [ Leu(w, t)dsds — [ [ hu(m,t) = 1—0— h , then we have

1
us(0,) = ~ — hg,

substituting these values in (3.2.12)) we have

1
u(x,t) = [% — hg]m + L, Lyu + L} Ru.

According to the ADM, the solution u(z,t) = > " u,(z,t). Thus (3.2.12) in series

form is

Zunxt :[;—h le+ L, lLtZunxt )+ L, RZunxt
n=0

Thus, the algorithm of the solution is

1 s
U()(I‘,t) = {; - h§]$,

Uni1(2,t) = Ly (Liuy + Ruy) n=0, 1, 2,---

For simplification, replace the constant [% —h%] with k, thus the first three iterations
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are

uy = L+ (Liug + Rug) = L} (0 + hkx) = / / (hks)dsds
o Jo

2

s? x
= hk [y= hk

5
JI2 T T 82
us = Loy (Lyus + Ruy) = L, (0+ k(h)QE) - / / <k<h)23)d5d8
o Jo
st zt
= k;(h)?I = k:(h)QI.
us = L (Liug + Ruy) = LH0 + k(R / / dsds
st b
we can conclude that the n'" term is given by
x2n
Uy = k(h)”(Qn)!.
Thus,
u(x,t) = ug +uy + Uy +uz + -+ Uy + - -
R bk R 4 () o
=k + hk—- + ()EJF ()6|+ -+ ()(2n)!+”

= £ ()

n=0

[e)

7r
2

n= O

Example 2. (Nonlinear heat equatzon[l)/ ) Consider the nonlinear heat equation

described by

% (Alw)u,)s + C(w) (321

ot
u(z,0) = g()

where A(u) and C(u) are arbitrary given functions.

In the operator form, equation(3.2.13) can be written as

Liu = N(u) (3.2.14)



3.2. AMD For Solving Partial Differential Equation 52

where L; = % and its inverse is L;' = fot(.)dT and

N(u) = (A(w)ug)y + C(u). Take L' to both sides of (3.2.14)

Ly'Lyu = L7Y(N(u))
ou

| G = ) o= L (V)
u(z,t) — u(z,0) = Ly Y(N(u))
then,

u(@,t) = g(z) + L (N (u))

Substituting w(z,t) = > 7 jun(z,t), Nu = Y A, and the initial condition in

equation above to obtain
Zun(:c,t) =g(x)+ L;! ZA”
n=0 n=0
Thus, the recursive scheme s given by

UO<£L‘,t) = g(l‘)
Upi1(z,t) = L7 A, n=0,1,2,--
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Wave Equation
In this section we will study the solution of linear and nonlinear wave equations

subject to initial conditions and with well defined boundary conditions using the

ADM,[29].

Example 3. (Linear wave equation[29]) Consider the following linear wave equation

Ou_ O O<z<m t>0
z __Z- T <
ot?2  Ox? ’ ’
u(0,t) = u(m,t) =0 t>0,
u(z,0) = sin’(x) O<z<m
u(z,0) = sin(2x) 0<z<m(3.2.15)
Solution:

Rewrite (3.2.15)) in ADM operator form

Lttu = Lmu, (3216)
where Ly = 8:2 and L., = aa—jg. Operating each side of (3.2.16|) by Ltt1 = fo fo Ydrdr
Lt_tlLttu = L;;' Lyu
/ / (9152 d dr =L, Ly,u
b ou(x,T) ,
( 10)dT = L, Lyu
P ou(x,T)  Ou(z,0)
A YT = L Ly
A ( at at ) T tt u
u(z,7) |5 —u(x,0)7 [7= L' Lypu
then,

u(z,t) — u(z,0) — u(x,0)t = L;' Lyyu.
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Substituting the initial conditions we have
u(z,t) = sin®(z) + tsin(22) + L' Ly, u.
Decompose the solution into infinite series

Z u, (z,t) = sin®(x) + tsin(2z) + L' Ly, Z un(2,1).
n=0 n=0

Then we get this algorithm of solution

uo(z,t) = sin’(x) + tsin(27)

Un(7,1) = L' Lygun (2, 1) n=0,1, 2, 3,....
For the previous equation, the first two iterations are

up = L' Lygug(w,t) = Lttlg[?) sin?() cos(x) + 2t cos(27)]

x
t t
= / / [6 sin(x) cos®(x) — 3sin®(z) — 47 sin(2x)]drdr
0 2 t3
= 3t sin(z) cos®(x) — 35 sin®(z) — 25 sin(2z)

Uy = L;leul(L t)

4
= L;;'[—6t* sin®*(x) cos(z) + 3t* cos®(x) — gt2 sin®(z) cos(z) — gts cos(2x)|drdr

¢t ¢t 3 1
iy sin?(z) cos(x) + 1 cos® () — §t4 sin®(z) cos(x) — EtB cos(2x).
Thus,
w(z,t) = up + up +ug + - -
2 t3 t4
= sin®(z) + tsin(2x) + 3t* sin(w) cos? () — 35 sin®(z) — 2§ sin(2x) — 3 sin?() cos()
+ a cos®(z) 3t4s' ?(x) cos(z) 1755cos(2 )+
— x) — <t"sin“(x T)— — )+
4 8 15

Example 3.2.4. (Nonlinear wave equation[15]) Consider the nonhomogeneous non-

linear partial differential equation
0*u 0%u

oy Uy = 6(a,1) (3.2.17)
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with initial condition

u(0,2) = f(t), ua(0,8) = g(t)
Rewrite (3.2.17) in the operator form:

Lyou — N(u) = ¢(x,t)

Ly,u= N(u)+ ¢(x,t) (3.2.18)
where L, = a 25, then its inverse is L} = [ [(.)dsds and N(u) = uuy.
Applying L} to (3.2.18)) yields

Lo Lyu= (w) + Ly é(z,t)
/ / 832 )dsds
= — —a)d
— [ G- enas
thus,
u(z,t) — 1z — o = L) N(u) + L} ¢(z, 1) (3.2.19)

using the initial conditions

o= f(t) and ¢ =g(t)
substituting in ((3.2.19))

u(@, t) = g(t)x + f(t) + Loy N(u) + Ly ¢z, 1)
using that u(x,t) =Y >° ju,(z,t) and Nu=73y A,
Zunxt (t)x + f(t) +L;§§:An+L;;¢(a;,t)
n=0

then it follows that

ug(z,t) = g(t)x + f(t) + Lo, (. t)
Upir(2,t) = Lt A,,mn=0,1, 2,
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Numerical Example: Consider the following nonhomogeneous nonlinear

wave problem

82u 0%u

with initial condition

u(z,0) =

u(0,t) =%, wu.(0,t) =0

In this problem Nu = ug%‘, d(z,t) =2 —2(t> + %), f(t) = t* and ¢(t) = 0. Using
the same procedure and the recursive terms algorithm obtained in the previous

description we get

uo(z,t) = g(t)r + f(t) + L o(x,t) = > + L} @—ﬂx+ﬁ)

=17+ // (2 —2(s* + t*)dsds = t* + x———x2t2

6
and
92
uy = Ly Ag = Ly N(ug) = Ly, ug 8;0
z px 4 82t2+s2—§—52t2
:/ / <t2+82—%—82t2) ( 8t26 )dsds
34

/ / (t* + s* — s*t?)(2 — 2s%)dsds

1 7 2 8

_ﬁﬂ+x4 ﬁﬁ——ﬁ+—ﬁ#+£

6 3 90 15 16
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The second term is

U = Lx_xlAl
d
A1 = E[N(UO —f- ul/\)] |)\70
d O*(ug + ur\)
= 5[(“() + Ul)\)T] A0

1 2 7 2 1
—op22 T a2 L6 2 62— 08
x +3x 391: 45w +15:U —|—84x
1 2 7 2 1
_ogty2 26 262 o8 2 o842 © 10
S S AT T 10"
44 2 8 422 2 642 442
— — —x°t —xt" — ="t
—|—3:1: +15:c —|—3x —|—15a: 33:
_ExstQ_gxﬁ_i 10
15 9 45

SO

up = Ly Ay = $2*? + 52 — 2252 — ’1“"—2 + .-
It can be easily observed that the self canceling "noise” terms appear between the
recursive components. So the solution is

u(z,t) = lim wu,(x,t) = 22 +
n—oo

3.2.3 Third Order nonlinear Partial Differential Equations

In this section I apply the ADM to solve the generalized log-KdV equation as
an example of higher order partial differential equations after reduced it to log-KdV
equation from [38] [13].
generalized log-KdV equation
The Korteweg de Vries equation (KdV) is a mathematical model of waves on shallow

water surfaces. It is an example of non-linear partial differential equation whose
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solutions can be exactly and precisely specified. The mathematical theory behind the
KdV equation is a topic of active research. The KdV equation was first introduced
by Boussinesq in 1877 and rediscovered by Diederik Korteweg and Gustav de Vries
in 1895.

The log-KdV equation models solitary waves in anharmonic chains with Hertzian

interaction forces and it is defined by
v+ (vin | v )y + Vg = 0. (3.2.20)

In this section we will try to solve the generalized log-KdV equation by using the

ADM. The generalized log-KdV equation is given by
v+ (vIn | v [")e + Vpww = 0, n=1,2,---. (3.2.21)

Solution

Using the rescaling of space x and time t variables as

x — \/nz,
t — Vndt,

carries out the equation(3.2.21)) to equation(3.2.20)).

In order to solve (3.2.20)), firstly we will use the transform
u(z,t) = Inv(zx,t),
this is the same as
v(z,t) = eu®h), (3.2.22)

and then substituting it in (3.2.20)) to get

we” + (€"u)y + (€")gze = 0,
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after differentiating the second and the third terms we get
[+ Ugzw + Uty + Uy + Btgtiyy + (uy)?]e” =0, (3.2.23)
since €* cant equal zero, so holds if
Up + Ugpe + Uty + Up + SUgligy + (Uug)® = 0. (3.2.24)
subject to the initial condition

L2
4

u(z,0) =

E e
N | —

where ¢ and k& are nonzero constants.

Rewrite (3.2.24)) in the Adomian operator form

Liw+ Lygu+ Lyu+ N(u) =0

Liuw = —Lyppu — Lyu — N(u) (3.2.25)

0 o3 0
where Lt = 3 mez = 355 Lz = o and

N(u) = utty + 3ugty, + (u,)®. Applying L; ' = fot(.)dT to both sides of (3.2.25)) to

obtain

t
L 'L = / udt = u(x,y,t) — u(x,y,0)
0
= L; [~ Lygat — Lyu — N(u)]

Using the decomposition series for u and the Adomian polynomial representation

for the nonlinear term N (u), gives

D un(wt) = w(@,0) + L [~ Lags Y tn(,t) = Lo > un(w, ) = Y Ay

n=0
where A,’s are Adomian polynomials. Then the ADM iterative scheme is

c 1 2

uy = u(x,0) = -+ =

k2 47
Up+1 = L;I[_Lzmxun(xa t) - Lmun('r’ t) - An]
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By considering N (u) = utt, + 3uzUz, + (ug)?, the first three iterations are

¢
U = Lt_l[—meuo(:ﬁ,t) — Lyug(z,t) — Ao = / 0+ g — Ap)dr
0

Ao = N (uo) = uo(tg)s + 3(u0)z(u0)zz + ((u0)z)’

c 1 2 T x. —1 T 3
Gta g gy )
_ ez 2 3w & e
2% 4 8 4 8 2k 2

¢
t
Uy = L [~ Lygpur (7, 1) — Lyug(2,t) — Ay] = / 0+ QC_k — Ay)dr

Ay = N () = 1 (o) 3(u0) 110 s + (0):))

=u [UO(UO)M + ((uo)x)Q + 3(“0)m(u0)m:ﬂ + 3((u0)m>2 + 3((U0)x)2(uo)m]

cxt ¢ 1 -1 2? -1
=5GP+ oG
_ at _cxt
 (2k)2 8k

then, uy = fo + (CQIZ”; + SE)dr

= 5 + foe + Sor-
U3 = L;l[—meUQ(x, t) — Lyus(x,t) — Ag]

¢ 2t + ckt?
:/0 (O+W_A0)d7-

, 1
AQ = UQN (U()) + _UlN ( )

91
ct?  Axt? cxt? 1 1 cxt
~ (o t et T a0

— 2 —3rt? —2rt? ct? Axt? crt?

02 s 1eRz sk 16k 32k

BT —c2x72 cr? ar? cxt?

243 3 3 3 3 3
t Sat —c2xt ct Cat cxt®
+ 24k + 48k2 + 96k *

o 12]{)2 + 24k3 + 48k2
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The solution in the series form is thus given by

u(z,t) = ug 4+ up +ug +ug + - - -

e 1 2 cat  ct? cArt?

B R TR TR ToThE]
cxt? =23 =St —ccat?

* 16k + 12k2 + 24 k3 48k2

N ct3 N Axt? N cxt? N
24k 48k2 96k

To find the solution v(z,t) we use (3.2.22)).

3.2.4 System of Partial Differential Equations

In this section we apply the ADM to solve system of partial differential

equations[7]. Consider the following system of partial differential equations

Up = Uly + VUy

Vp = VU + Uy (3.2.26)
with the initial conditions
u(z,y,0) =v(zr,y,0) =x +y
The exact solution is
T+y
t) = t) =
u('r7 y’ ) U<x7 y? ) (1 _ Qt)
write the system in (3.2.26]) in Adomian operator form
Liu = N(u) + K(u)
Ly = K(v) 4+ N(v) (3.2.27)
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where L, = 2, N(u) = uu,, K(u) = vu,, N(v) = vv, and K(v) = uv,. Apply

L7Y(t) = f(f( dr to both sides of (3.2.27) to obtain
t
L= [ wdr = u(r.y.6) — u(e5.0) = LHOW ) + K(w)
0
t
L 'L = / vdr = v —v(z,y,0) = L1 (t)(K(v) + N(v)) (3.2.28)
0

By Adomian decomposition method the solution of the above system assume to be

at the series form

e}

(@, y,t) =Y un(z,y,1)
v(x,y,t) = Zvn(x,y,t) (3.2.29)

and the nonlinear terms are

Nw) =vv, = X0 B,
K(u) =vu, = X72,C,
K(v) =uv, =% D, (3.2.30)

the values of A,,’s, B,’s, C},’s and D,,’s are determined using the general formula of

Adomian polynomials([2.1.10)).
Substitute (3.2.29)) and (3.2.30)) in (3.2.28) we get

Z]SLO:Oun(wa Y, t) - u(x, Y, 0) = Lil(zgo:OAn + E720:06171)

Srlovn(®,y,1) — v(z,y,0) = L™ (3320 By + X320 Dn)
the solution is obtained by the following scheme

U =T+ Y, Upi1 = L_l(An +Ch)

Vo=T+Y, OUpi1= L_I(Bn +D,)
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The first four terms are

AQ = N(Uo) = UO(UO)m =r+ty

C() = K(UO) = Uo(uO)y =x+ Yy

so,u; = 2(x + y)t
By = N(vg) = vo(vo)e =+ vy
Dy = K(vg) = up(vo)y = +y
so,v; = 2(x + y)t
Ay = up(ug)e + uo(ur) = 4(x + y)t
C1 = vo(ur)y + v1(ug)y = 4(x +y)t
so,up = (x +y)(2t)?
By = v1(vg)z + vo(v1)z = 4(z + y)t
Dy = up(v1)y +wi(vo)y = 4(x + y)t
so,v0 = (z + y)(2t)?
Ay = ug(ug)y +w(wr) + uz(uo), = 12(z + y)t°
Cy = vo(ua)y + v1(u1)y + vaug)y = 12(z + y)t?
soug = (v + y)(2t)°
By = v9(v2)z + v1(v1) e + v2(v0)e = 12(x + y)t?
Dy = ug(va)y + w1 (v1)y + uz(vo)y = 12(x + y)t*
so,v3 = (x +y)(2t)3
Ag = up(us)e + u1(Us) e + ug(uy) e + us(ug)e = 4(x + ) (2t)?

Cy = vo(u)y + vi(uz)y + va(ur), + v3(uo)y = 4(z +y)(2¢)*
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so,uy = (z +y)(2t)*

Bg = ’U()(?Jg)x + U1(U2>x + UQ('Ul)x + U3(UO)JJ = 4($ + y)(2t)2

Dy = ug(v3)y + ur(v2)y + us(v1)y + uz(vo)y = 4(x + y)(2t)°

so,vy = (z +y)(2t)*

= (2 +y)(20)"

v, = (z+y)(2t)"

Thus the solution is

r+y

u(w,y,t) =v(z,y,t) = 52 (x +y)(2t)" = (1—2t)

which is the exact solution of the system in (3.2.26)).

3.3 Integral Equations

Stating from the 1980s, the ADM has been applied to a wide class of integral
equations[2], [17] To illustrate the procedure, consider the following Volterra integral

equations of the second kind given by

uw(z) = f(x) + /\/fﬂ K(s,t)[L(u(s)) + N(u(s))]lds, X#0 (3.3.1)

Where f(x) is a given function, A is a parameter, K (z,t) is the kernel, L(u(z)) and

N(u(x)) are linear and nonlinear operators respectively. Assume that the solution

ux) =) un(x)
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and
N(u(z)) =>_ A,

substituting these assumptions in (3.3.1)

S i) = F(2) + A / K(s DI un(s) + 3 Adds

this gives the following scheme
up = f(z)
Upi1 = )\/x K(s,t)[L(un(s)) + Aylds, n=0, 1, 2,---
Example 3.3.1. [2] Consider the nonlinear Volterra integral equation
u(r) =2+ /I u?(s)ds.
0
Matching this equation with the general integral equation form we have
f(z) =, N(u(z)) = u’(=).

According to the techniques described above, we have the following recursive rela-

tionship
Uy = T,
Upy1 = /xAn(s)ds, n=20,1,2, 3,---.
0
We obtain the first three iterations as
Uy = /w Ap(s)ds
0
Ay = N(up(2)) = ug(z) = 2

€T 3
souyp = [y s*ds = %
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X
50,uy = f 28 = ds

u3:/ As(s)ds
0

1
AQ = UQN/(U()<£L') + EulN”(uo(:c))
22° - 5128

- 15( )+§§(2) 135

516 _ 1745
50,u3 = fo " ds = A Thus,

23 2x° 1725
U(I):u0+ul+u2+u3+"':x‘f‘?‘i‘f—f‘m—F"‘—



CHAPTER 4

Inverse Parabolic Problems

In this chapter ADM is applied for solving some inverse problems in some
inverse parabolic problems. In partial differential equations problems, solving an
equation with initial conditions and boundary conditions that are all specified com-
pletely, these problems are called direct problems and these problems are well posed.
In other words in these problems we have one output for each input given. However,
when initial or/and boundary conditions or some input coefficient or source function
are not given or not completely specified so that the problem has more than one
unknown, this problem is called inverse problem, that is given certain output to
get unknown input. We call inverse problem of coefficient identification if the prob-
lem coefficient is unknown and we call an inverse problem of source identification
if the source function is unknown, and so on. Also inverse problems are classified
according to the type of the partial equations we have. That means if the partial
differential equation is parabolic, then we have parabolic inverse problem, and so

on. In this chapter we focus our study on Parabolic Inverse Problems|?, 31, 35| [18].
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4.1 Inverse Problem of Boundary Conditions Iden-

tification

D.Lesnic and L.Elliott [31] apply the ADM to find the temperature and the
heat flux at the boundary x = 0 from the boundary conditions at = 1.

Consider a one-dimensional inverse problem heat conduction
Up = Ugy 0O<x<l, t>0 (4.1.1)

with the temperature and the heat flux fy(¢) and go(t) respectively on the boundary
x = 0 are unknown, and the temperature and the heat flux f;(¢) and ¢;(¢) at the

boundary x = 1 are measured and so they are known

a= a2 g s

in this case we have overspecification at one boundary which is =z = 1.

In order to solve this problem the decomposition method is used. Take the inverse

- :/x /I(.)dsds

Applying L' to both sides of the Adomian operator form of (4.1.1} - to get

operator L as follow

1Lmu =L, Ltu

/ / Uy )dsds = L;;Ltu

/ (ug(5,t) —ugp(1,t))ds = L' Liu

1
u(z,t) —cy(x —1) —cy = L' Liu (4.1.2)
from the boundary conditions at x = 1 we get that

u(1,t) = cy = fi(2)
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and
ou(l,t
uéx ) :gl(t) = (1,

so (4.1.2) becomes
u(z,t) = gi(t)(x — 1) + f1(t) + L} Lyu.

Using u(z,t) = Y-, u,(x,t) we have

Zun(w,t) =qgt)(z—1)+ fi(t) + L, 1Lt2un x,t).
n=0

From (4.1.3) we can define

(4.1.3)

ug = g1(t)(x — 1) + fi(t) upy1 = L Lyuy(z,t), n=0,1, 2,.... (4.1.4)

Based on equation(4.1.4), we can calculate

= L7 Lyug(z,t) = L7 Ly(g1 () (x — 1) + f1(t))

// g1 (t)s + fi(t))dsds

=W+ S D

= L Ly (z,t) = L‘lLt(( 1)39’1(15) +

// 1 ( 3,+f() )dsds

r—1)° (x —1)*
= +

— 1)
uz = L} Lyug(z, t) = L_lLt((:E ) 91 (t) + —"

5!

/ [t + g pasas

a:—l

=W+ C

(;1: — 1>n+1 (n)

(. —1)"
(n+1)! 91

n!

n —

(t) +
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Thus,

U:U0+U1+U2+U3++un+

(‘75—1)3 / (x_l)Z /

=g()(x—1)+ fi(t) + 31 9, (t) + ol 1(t)

+ 22 g+ 2 g

+ (J} ;'1) gi//(t)-i- (x g'l) {//(t)-i-"'
r— 1)t x—1)"
((n+)1)! g§ )(t)+< n! )

@ -1+ E Dy

— 1)

7 (t)

_|_

i+ U

*ﬁxénﬁrm+~~+————ﬁm@+~~y

The general formula is
o0 (ZL’ _ 1 2n+1 ZIZ' _
n=0

To check that this result is the solution of (4.1.1)) and satisfies the boundary con-

ditions we differentiate it twice with respect to z and once with respect to t we
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get
um(x,t):i@ +1)22 - +§: o) =D
:i(x(;_l +§; x—l)%)l ()
um@J»:§;@m9§§§ii §i2n—1—§;¥%;ﬁm@
mwxw:if%;%%}ﬁ”%w+§;9§%%ﬁﬁ“%>

letm=n+1lthenn=m-1ifn=1—-=m=2so

wat) = 3 LD o +§j“””"1 A

n—=

[\

I

(]
™o
£

|
!
+
-

_ ; i )(t) ; (?27_1 1) Qn) fln) () = Uy

the boundary conditions are satisfied, for n =0 and x =1

u(z,t) = fi(t) + (r — 1)gi(¢)

so u(1,t) = fi(t) and 6"—”) = gl(t)

Therefor, the result at | is the solution of the inverse problem in heat conduc-
tion (4.1.1)).

Two dimension inverse problem

Let us now describe the solution of the inverse problem in two dimensions x and y.

Consider the generalized 2-D heat conduction equation:
Upy T Uyy = U, 0 < <1, O0<y <1, £>0
subject to the following boundary conditions

U(l,y,t) = fl(yvt) W = gl<y7t>
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ou(z,1,t)
Ox

In this case, we have two solutions, one in x — dim and one in y — dim and Adomian

U(I’Lt) :fQ(xvt> ZQQ(x’t)

shows that the exact solution is the summation of these two solutions divided by 2.

In z — dim we take L} = [} [[(.)dsds to both sides of equation above

L Leou= L Lu— Ly,ul

// Upy)dsds = L[ Lyu — Ly,ul

/ (ug(s) — uy(1))dsds = L Lyu — Ly,ul

1
u(z,y,t) —ci(x — 1) — cg = L} [Lyu — Ly
u(z,y,t) — ¢ = L [Lyu — Lyyul,

where ¢, = ¢1(z — 1) + ¢ and from the boundary conditions at x = 1 we find that

G = gl(yvt) and Cy = fl(y>t>7 then ¢x = g1<y,t)<l' - 1) + fl(yut)7 S0
U(LL’, Y, t) = ¢x + L;xl [Ltu - Lyyu]'

Decompose the solution u in infinite series with ug = ¢, to obtain the following

recursive relationship of the solution:
Un+1 (iL‘, Y, t) = [L;;Lt - L;leyy]un
The same calculations are made for the y — dim. Define Ly f1 f1 )dsds

Ly Lyyu = Ly, [Liu — Lygu]

vy
/1 /1 (uyy)dsds = L, /[ Ly — Lyaul

/y(uy(s) —uy(1))dsds = Ly_y1 [Liuw — Ly,

1

U(I, y7t) - CS(y - 1) —C = L_l[Ltu - szu]

u<x7 Y, t) - ¢ L [Ltu Lmﬂ?u]a
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where ¢, = c3(y—1)+c¢4, from the boundary conditions at y = 1 we get ¢35 = ga(x, )
and ¢y = fo(z,t), then

u(z,y,t) = go(z,t)(y — 1) + fo(z,t) + L;yl [Liu — Ly,ul.
Using ug = ¢y, we get
Upt1(z,y,t) = [L;;Lt — L;;Lm]un.
The recursive relationship of the exact solution is

wo = 5[0+ 0

R _ _ _
Upy1(2,y,t) = §[LyylLt + L Ly — L) Loy — L Ly Juy,
Example 4.1.1. Consider a two-dimensional inverse problem
Uy T Uy = U, 0< 2 <1, O0<y<1, t>0

subject to the following boundary conditions

ou(l,y,t
u(l,y,t) =y + 4t + 1 du(l,y.t) _,
ox
0 1.t
x

Using the above solution, the first four iterations are:

o = 516n + 6] = Slon(y, ) = 1)+ fuly 1) + (e, 1)
(v = 1)+ (e, )
= 1[y2+4t+1+2(9[;—1)+az2+4t+1+2(y—1)]

2

2 2
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1
up = §[Lz;ylLt + Lo, Ly — L;ylL“ = Liz LyyJuo

= SIE )+ L) — Ly (1) — L))

9 yy TT
- 2(3(56 —1)? N 3(y — 1)2) C 3 -1 3(y—1)
2 2 2 N 4 4
_3@°+y") 3+ 3

4 2 2
1
Uy = §[L;;Lt + Loy Ly — L) Loy — L} Ly Juy
1, _ 4.3 .3
1, 3 (x—1) 3 (y—1)
= §<_(§)T - (§>T)
e Ca T N 3y+z) 3
N 8 4 4
1
Uz = §[L;;Lt + L Ly — L) Loy — L Ly Juy
1. B .. -3 P
1,3 (x—1)* 3 (y—1)°
2((4) 5 +(4) 5 )
_3@°+y") 3yt 3
16 8 8
3=, 5, 3(=1)" 3(=1)"
unzw(ﬂf +y )+2—n(y+:r)+ on
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Thus,

U=1Uy+ U + U2+ U3+ A Uy + -

3( 1)n+1 = 3(=1)" — 3(=1)"
—u0+ZWﬂ? +y +Z y+$>+z
n=1 n=1
[L’2 0 3 n+1 )
=4dt+r+y+ —1+Z 2+1 (2% + %)

n

+ZS -
n=1

1
=4t + (@ + )5+

3

B~ w
(]
—
pol |
S|
N—
3
+
/\
@
|
}_\
|
N o
M8
[\
3

since the above are geometric series so the summation is

u(z,y,t) = 4t + (2 + Z/l)[1 + §;] +y+r—1)[1— ;ﬁ

2 " 41+ (1/2) ]

:4t+x2—|—y2

The Inverse Heat Conduction Problem With Mixed Boundary Con-
ditions

Consider the following inverse problem
Up = Ugy, 0< <1, >0 (4.1.6)

Subject to initial condition

u(x,0) = p(x)

and with boundary conditions

u(0,t) = fo(t) unknown condition
—% = go(t) unknown condition
u(zo,t) = h(t) known condition
% = qi(t) known condition

Where zq € (0, 1) if o = 0 then we have a direct problem, if xy = 1 we return to the
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case discussed in the beginning. We solve this problem in two different approaches.
The first approach[31]:
Rewrite (4.1.6)) using Adomian operator form

Ltu = szu

Apply the inverse operator L; ' = f(f (.)ds to the equation above L, ' Lyu = L; ' L,,u
which implies u(z,t) — u(x,0) = L; ' L,u

using initial condition u(x,0) = p(x) we have the equation
u(z,t) = p(x) + L; ' Lypu
Now, define the inverse operator with respect to = as
L.} = / / (.)dsds.
xg J1
So
L Lyu=L_'Lu

then, u(x,t) — u(xg, t) — uy(1,t)(x — xo) = L} Lyu from the boundary conditions at

r=1and x = x¢ we get u(xo,t) = h(t) and u,(1,t) = g1(t), then
u(z,t) = g1(z,t)(x — x0) + h(t) + L, Liu
Then use the following recursive relation

uy = 3[p(x) + g1(z, 1)z — 20) + h(1)]

1
un+1(x7 t) = é[Lr_zlLt + Lt_leL’z]un

Example 4.1.2. Consider the inverse heat conduction described in (4.1.6) with

h(t) = 2t + 22, p(x) = 2% and gi(z,t) = 2. Then applying the recursive relation
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(4.1.4) we have
up = %[ﬁ +2(z — ) + 2t + 2]
= S Lot L L = [L2)(2) + L7 (2)
= i[mz — x5 — 2(x — x0) + 2t]
o = 2L L+ L Loy = SL22) + L7 (2)
- é[mQ — x5 — 2(x — x0) + 2t]

1
up(x,t) = 2n+1[3c2 — i =2 —xo) +2t], n=1, 2, 3,....
Hence using the decomposition series of u we find

U:U0+U1+U2—|—"'+Un+'“

— 1
:uo+zﬁ[x2—x3—2(z—xo)+2t]
n=1

1 o
2[35 +2(z — o) + 2t + 23] + St > —2(x — x0) + 21]
n=1
— 2 - To .’L'% > 1
= (2 + t;%ﬂ x—x0+7)+(m0—x—?);2—n

= 22 + 2t.

The Second approach[35]:
In this way we separate our original problem into two problems one is direct in the
interval (xo, 1) and the other is inverse problem in the interval (0, z), with ¢ > 0.

Consider the partial differential equation:
U = Ugg, To< <1, t>0 (4.1.7)
subject to the initial condition

u(x,0) = p(x)
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and boundary conditions

uteo. ) = (o), P00 = gy

This is the direct heat equation, take L;! = fg (.)dr and apply it to 1} we
get that u(x,t) = p(x) + L; ' Ly,u and by substituting u = >°°7 ju, to arrive the

recursive relation:

Uo(f‘,t) = p(x)
Ups1(x,t) = /0 (Lyptiy)dr. (4.1.8)

Now consider the following inverse problem
Up = Ugy, To< <1, t>0

subject to the initial condition

u(z,0) = p(x)
and boundary conditions
ou(0,t
u(zo, t) = h(t), 5(9;1: ) = go(1).

Since go(t) and also u(0,t) = fo(t) are unknown. If we integrate once with
respect to x we find that

o tgads = [ wyda

Uy (w0, 1) — uy(0,1) = [0 weda

thus, u,(0,t) is given by

zo
uz(0,t) = ug(xo,t) — / wpdzx. (4.1.9)
0

If we integrate the (4.1.7) twice with respect to x we have

o (X _ rxo [z
o Jo Uzads = [° [ wdx
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w(ao, t) — u(0,t) — uy(0,t)zo = f3° [ wdx

therefor, u(0,t) is obtained from

u(0,t) = u(xg, t) — uy(0,t)zo — / wpdzx. (4.1.10)
0

After computing the approximate value of u(x,t) from the relation (4.1.8) that
obtained from the direct part will use for solving u,(0,#)andu(0,¢) which they are
given by (4.1.9) and (4.1.10]), respectively, and then solve the inverse problem.

Example 4.1.3. [31] For the same example in the first approach we get for the

direct problem part

ug(z,t) = 2*

¢ t
uy (z,t) :/ (Lgpuo)dr :/ 2dt = 2t
0 0
¢
ug(x,t) = / (Lypur)dr =0=u, =0 Yn=0, 1, 2,...
0

thus u = ug + u; = 2% + 2t.

From we get that

Uy (0,1) = ug (o, t) — [ wede = 229 — [ 2dz =0

and from (4.1.10)

w(0,t) = u(wo, t) — uz(0,t)xo — [y wdr = 2t + 23 — 0 — [ 2dx
=2t + 23 — 23 = 2t.

We see that results are the same by both approaches.
Inverse Heat Conduction With Dirichlet Conditions
Consider the following Dirichlet inverse problem[31]
Up = Uypy, O< <1, t>0 (4.1.11)

Subject to initial condition

u(x,0) = p(x)
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and with boundary conditions

u(zo,t) = h(t),  u(l,t) = fi(t).
Where x5 € (0,1) if 2o = 1 then the problem has a nonunique solution, while if
xo = 0 have a direct Dirichlet problem for the heat equation.
For solving the Dirichlet problem above using the Adomian decomposition method

we first define the inverse operator with respect to x as follow

T pT o 1 T
L;xl:/ /(.)dsds—slc_zj/ / (.)dsds

Apply this operator to Adomian operator form of (4.1.11]) we get

L Leou=L_'Liu

(@, t) — u(zo,t) — ug (w0, t)(x — 7o) — ”15 - ;Z (u(1,t) — u(zo, t) — ug(wo, £)(1 — 20)) = Lo Leu
u(z,t) —[1— T xo]u(xg,t) Iz xou(l,t) =L 'Lu

1-— ZTo — X9
so the equation of u in & — dim is given by

Tr — 2y — X

(e, t) =1 — Ju(zo, t) + f u(1,t) + L7 Lyu.

1—.1'0 — Xp

And we know the equation of u with respect to time inverse operator is given by
u(z,t) = p(x) + L; ' Lygu.

Taking averages the solution u is

u(z,t) = %[(1 B

T — o 1, _
= $0>u(x0’t) + = u(1,t) + p(x)] + §[L$11Ltu + L; MLyl

Substitute the decomposition series u = Y > u,, then the following are the recur-
sive terms of the solution

1 T — Xg

uoz—[(l— T — 29

t
]_—ZL‘())U(:UO, )+ 1—1’0

u(1,t) + p(z)]

Uni1 = =Lt Litty + L7 Lyguy], n=0, 1, 2,....
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Example 4.1.4. For the same example in the previous section with fi(t) = 2t + 1

we have

uy =211~ (e, ) + Tu(l,6) + p(o)]
:%[(1—?_332)(2?54—1‘(2))—# :ig(2t+1)+x2]
= —[2t + x} xgl:xg f:x;]—i-xQ]
_%[2t+x3+(1—x§)f:zz+x2}
:%[2t+x§+m2+(1+xo)(x—xo)]
:%[2t+x2+x(1+xo)—xo]

wr = S+ L Luluo = 4122 2) + 1 (2)
= }l[;pQ — 2% — 2210 + 228 — (2 — 20) (1 + 20) + 2m0(2 — T0) + 21]
:;l[xZ—x(1+xo)+xo+2t]

| 1 L o
Ug = Q[L:m:Lt + L, Lys|uy = g[x — (1 + o) + xo + 21]
un(x,t):2n+1[x2—x(1+x0)+x0+2t], n=1,2 3,....

Thus the final result is

U=1uyt+u+us+---+u, +---

o)

1
2[2t+:1: + (14 x0) — x0) +Z2+1x — (1 + o) + xo + 2t]
a: + 2t) ZQn-H (14 x0) — 0| Z
n=0 n=0
= 2® + 2t

Inverse Heat Conduction With Neumann Conditions
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Consider the following Neumann inverse problem[31]
U = Ugp, O0< <1, t>0 (4.1.12)

Subject to initial condition

u(z,0) = p(x)

and with boundary conditions

uz (o, t) = q(t), uz(1,t) = g1(¢).
Where zy € (0,1) if 2o = 1 then the problem has a nonunique solution, while if

xo = 0 have a direct Neumann problem for the heat equation. To solve this problem

we use the same procedure as in previous section, define Ll by

o :/z:/mj(.)dsds—H/m:(.)dsds.

Apply this operator to Adomian operator form of (4.1.12]) get
L1Lu=L_"Lu

_ (x—:co)2
2(1—zo)

u(z,t) — u(zo, t) — ug(xo, t)(x — x0) (up(1,t) — up(wo, t) = L Lyu

since u(zo,t) is not given call it C'(¢), then

(x — g)*

u(z,t) = C(t) + ug(zo, t)(x — x9) +

Then the exact equation of u after considering the solution with respect to time is

1 _ 2
e, 1) = S100) + el 0 — a0) + (s (1,1) — w0, 1) + ()
2 2(1 — zo)
1
+ §[L;;Ltu + L Lyaul.
Substitute u =Y, u,, then we obtain
(x — 9)*

up = =[C(t) + uz(xo, t)(x — x0) + (uz(1,t) — ug(xo, t) + p(z)]

2(1 — [Eo)

— N =

Uni1 = =Lt Litty + L7 Lyguy], n=0, 1, 2,....

[\]
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Example 4.1.5. For the same example in the previous section we have

to = 1O + a0, — 70) + 2T, (1,0) — (. ) + )]
2 2(1 — x)
= 210() + 2ol — w0) + H@ — 229) + 27]
_ %[C(t) 227 — 42
Uy = %[L;th + Ly Ly Jug
= L2 CW) + 17 @) =1
ug =0
Un(z,t) =0, Vn=2, 3, 4,...
Thus the final result is
=g+ u; = 1[C(t)+29r;2—95§]+t (4.1.13)

2
since u(x, t) satisfies the original equation u; = uy, and the initial condition u(z,0) =
p(z) = 1[C(0) + 22® — 23] = 2* so we have from these relations C(t) = 2t + ¢
and ¢ = x? respectively, thus C(t) = 2t + x3 substitute it in Eq we get
u(x, t) = 2t + 2.

4.2 Inverse Problem of Coeflicient Identification

In this section, the application of the ADM is discussed for solving an inverse
problem of coefficient identification [18], 35].

Consider the following inverse parabolic problem
up = Au(z,t) + p()u(z,t) + ¢(z,t), 0<t<T, x€Q (4.2.1)

where Q = [0,1]¢ is the special domain of the problem and its boundary is 9,

r = (x1,...,24), ¢(x,t) is the source function and p(t) is a control parameter.
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In this problem both of function u(x,t) and p(t) are unknown, assume the above

problem is subject to the initial condition
u(z,0) = f(z), z€
and with boundary conditions
u(z,t) = h(z,t), 0<t<T, zedl

To solve this problem we must have extra condition in a point inside €2, so let us

define an additional condition at xy € €2 as:
u(zo, t) = E(t), T>t>0

The Solution Technique:
First, we will use the following transform in order to get a partial differential equation

with only one unknown function.
w(z,t) = u(z, t)r(t), (4.2.2)
where
r(t) = exp(— /Otp(s)ds). (4.2.3)

From the (4.2.2) we find the values of u; and Au as follows

_ r(t)we — r'(tHw(z, t)
r3(t)

(4.2.4)

and

Aw(z,t)
r(t)

also from (4.2.3]) we find that p(t) is given by

- /Otp(s)ds = Inr(t)

p(t) = it (4.2.6)

Au(z,t) = (4.2.5)

(4.2.7)
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substitute (4.2.4), (4.2.5) and (4.2.6) in (4.2.1) to get

wi(z,t) = Aw(z, t) + r(t)p(x, t) (4.2.8)
with the initial condition
w(z,0) =u(z,0) = f(x), x€Q
and boundary conditions
w(z,t) =u(z, t)r(t) = h(z,t)r(t), 0<t<T, x€d
and the additional condition is
w(zg, t) = u(z, t)r(t) = Et)r(t), 0<t<T, x9€

from above the relation of finding r(t) is given by

w(xg, t)

"=

(4.2.9)

From these information we conclude that the new partial differential equation is

direct problem and we can solve it using ADM.

Apply L; ! = fOt(.)dT to both sides of 1) to get that:
¢
w(z,t) = w(x,0) +/ (Aw(z,7) 4+ r(1)d(z, T))dT
0

since w(z,t) = > 7 wy(x,t) then

an(x,t) =w(z,0) + /0 (Aan(x, t) + ro(m)o(z, 7))dr

n=0

since from (4.2.9)) we have

ralt) = —wng‘égg b, (4.2.10)
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Then the recursive relationship is
WO(£> t) = W(l', O)

Wpi1(x,t) = /0 (Awy(z,7) + 1rp(T)O(2,7))dT, =0, 1, 2,... (4.2.11)

after finding w(x,t) and r(t) from (4.2.11)) and (4.2.10)), respectively, we used them

to find u(x,t) and p(t).
Example 4.2.1. [35] Consider this inverse parabolic problem
Uy = Ugg (2, 1) + p(D)u(z, t) + e (7% — (1 + 1)) (cos(mz) + sin(nz)), 0<t<T, 0<z<]1
subject to the initial condition

u(z,0) = cos(mx) + sin(nz), 0<zr<l1
and with boundary conditions

w(0,t) = e ", u(l,t) = —e %, 0<t<T.
The extra additional condition is
u(zo, t) = e (cos(nx) + sin(rz))

Solution:

Using the above technique we get that

wo(x,t) = cos(mz) + sin(mx)

() = wo(wo,t)  cos(mx) + sin(mx)
olt) = E(t) e ®(cos(mx) + sin(nz))

wi(z,t) = /0 ((wo)zz(z,t) + ro(T)0(2, 7))dT

= /0 [(—=7?)(cos(mx) + sin(mz)) + ¢ e ™ (12 — (1 + t)?)(cos(wz) + sin(wz))|dr

= /o (— (14 7)) (cos(nz) + sin(rx))dr = (w + %)(cos(m;) + sin(mx))

nie) = 00l e Z0E
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after many terms we have r(t) = e and w(x,t) = cos(nx) + sin(nz), thus from

(.2.2) and (4.2.3) we get u(z,t) = e (cos(rz) + sin(rx)) and p(t) = 1 + 12,

4.3 The Inverse Conductivity problem

In [25 10, B0, 26] researchers worked to give numerical solution of the inverse
conductivity problem. Let Q € R? be an open and bounded subset with smooth
boundary 0f2. Assuming that there are no sources or sinks of current in 2, the
application of a voltage potential f on 02 induces a voltage potential u inside 2

defined as the unique solution of the boundary value problem
V.47Vu) =0 in Q, u=f on 00

where v : Q — (0, 00) is measurable and bounded away from zero to infinity. Often
we can assume that v is constant near 0f) always we take v = 1 near 9%, then if
f € C?*09), the solution u € C* near 99, so the following classical Neumann data

are well defined

ou
= —h
Vay |6Q )

where h is a function in C*(99). To solve this problem Kim Knudsen [30] reduced
the problem to Schrodinger equation.
(A—qv=0 in Q,
v loa= 72U |so= u |so= f (4.3.1)

where ¢, v are given by

1
v ="y2u

q= V_I/ZAVI/Q
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since 7 = 1 near 092 and u |go= [, In this section we will apply the Adomian

decomposition method to the problem
(A—qv=0 in Q,
Ulaa=f, dv=h on 00
from 9,0 = h we can get approximation of v, which is assumed to be . In R”,
v =v(z,y) so equation(L.3.1)) is

OpaU + Oyyv — qu(z,y) =0 (4.3.2)

since v : Q@ — (0,00), d,v = h and v |go= f. Rewrite equation(4.3.2) in the
gt (0, 00), Y q

operator form
Lo+ Lyv—Rv=0 (4.3.3)

where L,, = 2 Ly, = g—; and Rv = qu. Applying L;yl = foy foy to both sides of

81.2 Y

equation(|4.3.3))

(z)v — L, Lygv

v 82 Y ov
/ / 852 Ydsds = /0(%—%(%0)3)615

v(z,y) — vy(x,0)z — v(x,0) = L, q(x)v — L, Lyzv (4.3.4)

vy

then we have

using the boundary condition v(x,0) = f and v,(z,0) = ¢ at y = 0, substituting in
@34)

v(@,y) = Cy+ [+ Ly qx)v — Ly Legv. (4.3.5)

As we knew Adomian decomposition method gives the solution v(x,y) as infinite

series,
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substituting in to get
Zvn(x,y Cy+f+Lyyq Zvn x,y) 1LMZUn z,y). (4.3.6)
from equation(4.3.6)) define vy = Cy + f f(z) + ¢(z)y and
Upi1(2,y) = L;qu(x)vn — L;;Lmvn for n=0,1, 2,....
The first three terms are
v = q(x)Ly_leo — L;yleUO
= q(@) Ly, (f(2) + C(@)y) = Ly Law(f(2) + C(2)y)

2

3
= a@) (@) 5 +C5) = Ly (7 + )
B vy WYy
= (o) (f(@) 5+ 5 — (ML + )

5 4 5
vy = (@) (f ()55 +¢%) - (f(4)y— +()
vy = @) (@Y + L)~ (FOL 4 (oY)

then,

’U(I‘,y):Uo—i‘Ul—i‘Ug—'—Ug“""

= J(@) + ey + () (F(@) 5 + 5 — (5
+ T+ @) (@) + )

5 6

4
—(f5 <<4>y—> + qS(x)(f(I)g
+CZ;!) (F9% +< 2+

by reorder the terms of v(z,y) we get that

Y y' y°
v,y) = fA+q(@) 5 + ¢ @) +q3a+---)
3 5 2 6
Y Yy y' Y Y Yy
+Hy+a@)g + @) g+ d ) = (P fOG O )

7

3
_ (Y <4_ ©Y ...
(g g+ )
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this solution can be written as summation of these series

— on U w Y
fzq +CZq2 Y Z:f@)ﬁ—z:g(“%“!

v(z,y) is approximately

v(z,y) x exp(iq.y) + w(z,y) (4.3.7)

Since v(x,y) is bounded and is the unique solution of the Schrodinger equation so

it has this formula
v(z,y) = exp(ik.x) as|x|— oo (4.3.8)

where k is a complex orthonormal vector, k£ # 0 and x € R. So from (4.3.8]) and
@37

exp(ik.x) < exp(iq.y) + w(z,y)

but as | z |— oo must | w(z,y) ||— 0 in order to keep v(z,y) bounded. Thus, we

have

exp(ik.x) < exp(iq.y)

= ¢ x k.x/y, from ¢ = v2A4Y? and u = yv/?v we can find v and u of the

conductivity problem respectively.
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