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Abstract

We review the Adomian decomposition method(ADM). We give general descrip-

tion of this method, the convergence analysis of this method and we present some

modifications for the standard ADM. In chapter 3, we will give examples of using

ADM for obtaining exact and numerical solutions for nonlinear ordinary differential

equations, partial differential equations and integral equations. We present a solu-

tion of generalized log-KdV (The Korteweg de Vries) equation as an application of

using the ADM for solving nonlinear PDEs of higher order. In chapter 4, we will

consider different types of inverse partial differential equations, boundary conditions

identification, coefficient identification and source identification using ADM. In this

part, we will try to solve the heat conduction inverse problem in special cases using

Adomian decomposition method.
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ص: لخالم  
 

Adomian تي تستخدم فيال   عرض طريقة الفصلالهدف الرئيسي من هذه الرسالة هو  

حل المعادلات التفاضلية العادية والجزئية وكذلك عرض بعض التحديثات التي طرأت 

 على هذه الطريقة من أجل تسريع واختصار خطوات الحل.

  

في    Adomian   لامثلة على استخدام طريق الفصلافي الفصل الثاني نقدم العديد من  

والمعادلات التفاضلية الجزئية حل المعادلات التفاضلية العادية الخطة وغير الخطية 

 الخطية وغير الخطية وايضا أنظمة مكونة من هذه المعادلات. في الجزء الثاني نقوم 

 بحل معادلة KDV الجزء الأخير من هذا الفصل يعرض كيفية حل الثالثة.  من الدرجة   

 المعادلات التفاضلية التكاملية.  

 

 الفصل الثالث والاخير نقوم بعرض أنواع عدة من المعادلات التفاضلية العكسية وحلها 

نحاول حل مشكلة التوصيل العكسي بهذه ومن ثم   Adomian باستخدام طريقة الفصل 

 الطريقة.
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CHAPTER 1

Introduction

The Adomian decomposition method was presented in 1980’s by Adomian.

The method is very useful for solving linear and nonlinear ordinary and partial

differential equations, algebraic equations, functional equations, integral differential

equations and the convergence analysis of the ADM was discussed in [2]. Y. Cherru-

ault and G. Adomian give the new proof of convergence analysis of the decomposition

method [16]. E. Babolian And J. Biazar, define the order of the convergence of ado-

mian method in [11]. After that many modifications were made on this method by

numerous researchers in an attempt to improve the accuracy or extend the appli-

cations of this method. In given in [9]. A new modification methods of the ADM,

Wazwaz modifications and the two step modified Adomian decomposition method.

In chapter 3, we will use the ADM to solve different types of differential equations.

Yahya Qaid Hasan and Liu Ming Zhu modified the ADM to solve second order sin-

gular initial value ordinary differential equations [21]. Several examples on solving

the ordinary differential equations, initial value problems and boundary value prob-
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lems are introduced in [2]. J. Biazar, E. Babolian and R. Islam in [12] obtained the

solution of a system of ordinary differential equations by using ADM. In the second

part of chapter, we will apply the ADM for solving partial differential equations.

We will consider first order PDEs as done by [7]. Then, we move to several 2nd

order PDE’s, linear heat equation, nonlinear heat equation [14], linear wave equa-

tion and nonlinear wave equation [15]. The generalized log-KdV(Diederik Korteweg

and Gustav de Vries)equation in [38] will be solved by ADM as an application on

higher order PDE’s. We apply the method for solving system of PDE’s as in [7]. At

the end of this chapter, we show how we can solve the integral equations by using

Adomian decomposition method.

In chapter 4, we review some inverse problems and show how ADM is used for solv-

ing these problems. There are many classifications of the inverse problems, we will

deal with boundary conditions determination of inverse problems[31] and parameter

determination for some equations[35].



CHAPTER 2

Adomian Decomposition

Method(ADM)

2.1 General Description of ADM

In this section we give standard description of the ADM and some of its

modifications depending on the references[7, 40, 8, 2]. Consider the general equation

Lu+Nu+Ru = g (2.1.1)

where u is the unknown function, L is the linear differential operator of higher

order which is easily invertible. Assume its inverse is L−1 and it will be an integral

operator, N is the nonlinear operator, R is the remaining linear part and g is a given

function (source). Take L−1 to both sides of (2.1.1) to get:

L−1(Lu+Nu+Ru = g)
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L−1Lu = L−1g − L−1N(u)− L−1R(u)

thus,

u− φ = L−1g − L−1N(u)− L−1R(u) (2.1.2)

where φ is presented from the initial conditions or from the boundary conditions or

both, it depends on how we choose differential operator that solve the given problem.

The ADM assumes that solution u of the functional equation can be decomposed

into infinite series

u =
∞∑
n=0

un.

and the nonlinear term N(u) can be written as infinite series Nu =
∑∞

n=0An where

the An’s are the Adomian polynomials.By substitution this in (2.1.2) gives:

∞∑
n=0

un = φ+ L−1g − L−1

∞∑
n=0

An − L−1

∞∑
n=0

R(un) (2.1.3)

Now from equation (2.1.3), we can obtain the solution algorithm as follows:

u0 = φ+ L−1g, un+1 = −L−1(An +Run), n = 0, 1, 2, · · · (2.1.4)

Given u0, the other terms of u can be determined respectively. If one term of un is

equal zero then the following terms are all zeros.

2.1.1 Solution algorithm

Refereing to [1, 17], we will show how the solution algorithm (2.1.4) was

chosen. Consider the nonlinear functional equation

u−N(u) = f (2.1.5)
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where N is the nonlinear operator and f is a function determined after applying

L−1 to the source function g. Suppose that the solution of (2.1.5) is a family of

u =
∞∑
n=0

unλ
n (2.1.6)

where λ is a parameter. Suppose that the radius of convergent ρ of the series above

is grater than one, so the series converges for | λ |< ρ where ρ > 1. As we showed

previously the nonlinear function N(u) can be expanded in infinite series

N(u) =
∞∑
i=0

αiu
i (2.1.7)

with radius of convergence ρ0 > 1, this implies that the series above converges for

| u |< ρ0. In general it can suppose that ρ0 = ∞ because in practical applications

the nonlinear operator N(u) is a polynomial or a nonlinear function admitting an

entire series converging for any u with | u |< ∞. Now by substituting (2.1.6) in

(2.1.7) we get

(a) N(
∞∑
n=0

unλ
n) =

∞∑
i=0

αi(
∞∑
n=0

unλ
n)i

let
∑∞

i=0 αi(
∑∞

n=0 un)i =
∑∞

i=0Ai, then the above series is equivalent to

(b) N(u) =
∞∑
i=0

Aiλ
i = A0 + A1λ+ A2λ

2 + A3λ
3 + · · · (2.1.8)

From the first expansion (a) of N(uλ) in equation above we have

N(uλ) = α0 + α1(u0 + u1λ+ u2λ
2 + · · · ) + α2(u0 + u1λ+ u2λ

2 + · · · )2

+ α3(u0 + u1λ+ u2λ
2 + · · · )3 + · · ·

= α0 +α1u0 +α1u1λ+α1u2λ
2 + · · ·+α2u

2
0 + 2α2u0u1λ+α2u

2
1λ

2 + 2α2u0u2λ
2 + · · ·+

α3u
3
0 + 3α3u

2
0u1λ+ · · · .

By matching this expansion with the second formula (b), the values of Ai’s can be
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obtained as follows

A0 = α0 + α1u0 + α2u
2
0 + α3u

3
0 + · · ·+ αnu

n
0 + · · ·

A1 = α1u1 + 2α2u0u1 + 2α3u
2
0u1 + · · ·+ nαnu

n−1
0 u1 + · · ·

A2 = α1u2 + α2u
2
1 + 2α2u0u1 + α3u

2
0u2 + 3α3u0u

2
1 + · · ·

From above we can conclude that the values of Ai’s depend only on the values of

ui’s.

By substituting (2.1.8) and (2.1.6) in (2.1.5) and make λ = 1, we obtain, because of

the convergence of the two series:

∞∑
n=0

un −
∞∑
i=0

Ai = f (2.1.9)

This equation can be satisfied if:

u0 = f

un+1 = An(u0, u1, . . . , un)

2.1.2 The Adomian polynomials

The Adomian polynomials An’s are first constructed by Adomian in 1992, he

gives general formula to determine the values of An’s[2].

An =
1

n!

dn

dλn
[N(

n∑
i=0

λiui)]λ=0, n = 0, 1, 2, · · · (2.1.10)

The first three term of An’s are

A0 = 1
0!

d0

dλ0
[N(

∑0
i=0 λ

iui)]λ=0 = N(u0)

A1 = 1
1!

d1

dλ1
[N(

∑1
i=0 λ

iui)]λ=0 = d
dλ

[N(λ0u0 + λ1u1)]λ=0

= [N ′(λ0u0 + λ1u1]λ=0(u1) = u1N
′(u0)

A2 = 1
2!

d2

dλ2
[N(

∑2
i=0 λ

iui)]λ=0 = 1
2!

d2

dλ2
[N(λ0u0 + λ1u1 + λ2u2]λ=0
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= 1
2!

d
dλ

[N ′(λ0u0 + λ1u1 + λ2u2)(u1 + 2λu2)]λ=0 = 1
2!

[N ′(λ0u0 + λ1u1 + λ2u2)(2u2) +

N ′′(λ0u0 + λ1u1 + λ2u2)(u1 + 2λu2)2]λ=0

=
u21
2!
N ′′(u0) + u2N

′(u0)

The ADM is similar to find the Taylor’s series expansion for the nonlinear function

N(u) around the initial function u0.

N(u) = N(u0) +N ′(u0)(u− u0) +
1

2!
N ′′(u0)(u− u0)2 + · · ·

since from ADM method u =
∑∞

n=0 un = u0 + u1 + u2 + · · · substituting this in the

above expansion we get

N(u) = N(u0) +N ′(u0)(u1 + u2 + · · · ) +
1

2!
N ′′(u0)(u1 + u2 + · · · )2 +

1

3!
N ′′′(u0)(u1 + u2 + · · · )3 + · · · ,

after that we take apart the expansion terms

N(u) = N(u0) +N ′(u0)(u1) +N ′u2 +N ′u3 + · · ·+ 1
2!
N ′′(u0)(u1)2 + 1

2!
N ′′(u0)u1u2 +

1
2!
N ′′(u0)u2u1+ 1

2!
N ′′(u0)(u2)2+ 1

2!
N ′′(u0)u1u3+ 1

2!
N ′′(u0)u3u1+· · ·+ 1

3!
N ′′′(u0)(u1)3+

1
3!
N ′′′(u0)(u1)2u2 + 1

3!
N ′′′(u0)u2(u1)2 + 1

3!
N ′′′(u0)u1u2u1 + · · · ,

and by reordering the terms and determining the order of each term which depends

on both the subscripts and the exponent of the un’s. For example the order of unmis

mn for example u2
1 is of order 1×2 = 2 and the order of umun is m+n. For example

u0u1 is of order 0 + 1 = 1 and the order of umn u
l
k is mn+ kl, for example u3

2u
3
1 is of

order (2× 3) + (1× 3) = 6 + 3 = 9 and so on. Therefor, we get

N(u) = N(u0) + N ′(u0)u1 + N ′(u0)u2 + 1
2!
N ′′(u0)u2

1 + N ′(u0)u3 + 2
2!
N ′′(u0)u1u2 +

1
3!
N ′′′(u0)u3

1 +N ′(u0)u4 + 1
2!
N ′′(u0)u2

2 + 2
2!
N ′′(u0)u1u3 + 3

3!
N ′′′(u0)u2

1u2 + · · ·

By comparing the terms from the previous formula with the terms of the assumption

N(u) =
∑∞

n=0An the values of An’s can be constructed as follow

A0 = N(u0)

A1 = u1N
′(u0)

A2 = u2N
′(u0) +

u21
2!
N ′′(u0)
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A3 = u3N
′(u0) + 2u1u2

2!
N ′′(u0) +

u31
3!
N ′′′(u0)

...

which are the same values that we got from the Adomian’s general formula (2.1.10)

used to determine the Adomian polynomials An.

2.2 The Convergence Analysis of ADM

Cherruault has given the first proof of convergence of the ADM and he used

fixed point theorems for abstract functional equations. In this section we give the

proof of convergence of the Adomian decomposition method[1, 16]

Consider the general functional equation

u−Nu = f, u ∈ H (2.2.1)

where H is the Hilbert space and N is the nonlinear operator N : H → H and

f = L−1g is also in H. From the last section the ADM is based on assuming that

the solution u and the nonlinear function N(u) are decomposed into infinite series

u =
∑∞

n=0 un and N(u) =
∑∞

n=0An.

Substituting these decomposition series in (2.2.1) yields

∞∑
n=0

un −
∞∑
n=0

An = f

then the recursive terms are got from this algorithm

u0 = f

un+1 = An(u0, u1, . . . , un)

The Adomian decomposition method is equivalent to find the sequence

Sn = u1 + u2 + u3 + · · ·+ un by using iterative scheme
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S0 = 0

Sn+1 = N(Sn + u0),

where N(Sn + u0) =
∑n

k=0Ak,

If this limit exist

S = lim
n→∞

Sn

in a Hilbert space, then S is a solution of the fixed point functional equation S =

N(u0 + S) in H.

Theorem 2.1. [2] Let N be a nonlinear operator from a Hilbert space H where

N : H→ H and u be the exact solution of (2.2.1). The decomposition series
∑∞

n=0 un

of u converges to u when

∃α < 1, ‖ un+1 ‖≤ α ‖ un ‖,∀n ∈ N ∪ {0}.

Proof. We have the sequence

Sn = u1 + u2 + · · ·+ un

We need to show that this sequence is a Cauchy sequence in the Hilbert space H.

‖ Sn+1 − Sn ‖=‖ un+1 ‖≤ α ‖ un ‖≤ α2 ‖ un−1 ‖≤ · · · ≤ αn+1 ‖ u0 ‖

In order to prove that Sn is Cauchy sequence

‖ Sm − Sn ‖ =‖ (Sm − Sm−1) + (Sm−1 − Sm−2) + · · ·+ (Sn+1 − Sn) ‖

≤ ‖ Sm − Sm−1 ‖ + ‖ Sm−1 − Sm−2 ‖ + ‖ Sm−2 − Sm−3 ‖ + · · ·+ ‖ Sn+1 − Sn ‖

≤αm ‖ u0 ‖ +αm−1 ‖ u0 ‖ + · · ·+ αn+1 ‖ u0 ‖

= (αm + αm−1 + · · ·+ αn+1) ‖ u0 ‖

≤(αn+1 + αn+2 + · · · ) ‖ u0 ‖
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then,

‖ Sm − Sn ‖=
αn+1

1− α
‖ u0 ‖, for n,m ∈ N,m ≥ n (2.2.2)

Since α < 1. From (2.1), the sequence {Sn}∞n=0is a Cauchy sequence in the Hilbert

space. Hence,

limn→∞Sn = S, forS ∈ H

where S =
∑∞

n=0 u. Solving (2.2.1) is the same as solving the functional equation

N(S + u0) = S; by assuming that N is a continuous operator we get

N(S + u0) = N( lim
n→∞

(Sn + u0)) = lim
n→∞

N(Sn + u0)) = limSn+1 = S

so S is the solution of (2.2.1).

2.2.1 The Convergence order of ADM

The order of convergence of the ADM was discussed by Babolian and Biazer[11].

Definition 2.1. [11] Let Sn be a sequence that converges to S. If there exist two

constants p and c, c ∈ R, p ∈ N, such that

lim
n→∞

| Sn+1 − S
(Sn − S)p

|= c (2.2.3)

then the order of convergence of Sn is p.

To determine the order of convergence of Sn, consider the Taylor expansion

of N(Sn + uo) around the point (S + uo):

N(Sn + uo) = N(S + uo) +N ′(S + uo)(Sn − S) +
1

2!
N ′′(S + uo)(Sn − S)2 + · · ·
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+
1

m!
Nm(S + uo)(Sn − S)m + · · ·

N(Sn + uo)−N(S + uo) = N ′(S + uo)(Sn − S) +
1

2!
N ′′(S + uo)(Sn − S)2 + · · ·

+
1

m!
Nm(S + uo)(Sn − S)m + · · · (2.2.4)

Since N(S + uo) = S and N(Sn + uo) = Sn+1, so (2.2.4) becomes

Sn+1 − S = N ′(S + uo)(Sn − S) +
1

2!
N ′′(S + uo)(Sn − S)2 + · · ·

+
1

m!
Nm(S + uo)(Sn − S)m + · · · (2.2.5)

Theorem 2.2. [11] Suppose N ∈ Cp[a, b] if Nm(S+uo) = 0 for m = 0, 1, 2, . . . , p−1

and Np(S + uo) 6= 0, then the sequence Sn is of order p.

Proof. By the hypotheses of theorem, from (2.2.5) we have:

Sn+1 − S =
1

p!
Np(S + uo)(Sn − S)p +

1

p+ 1!
Np+1(S + uo)(Sn − S)p+1 + · · ·(2.2.6)

By dividing both sides of this equation by (Sn − S) we get

Sn+1 − S
(Sn − S)p

=
1

p!
Np(S + uo) +

1

p+ 1!
Np+1(S + uo)(Sn − S) + · · · (2.2.7)

Then we take the limit as n→∞ to both sides of equation (2.3.1)

lim
n→∞

| Sn+1 − S
(Sn − S)p

|= lim
n→∞

1

p!
Np(S + uo) + lim

n→∞

1

p+ 1!
Np+1(S + uo)(Sn − S) + · · ·(2.2.8)

Since limn→∞(Sn) = S then every terms that has (Sn−S) will be canceled so at the

end we have

lim
n→∞

| Sn+1 − S
(Sn − S)p

|= lim
n→∞

1

p!
Np(S + uo) = c (2.2.9)

so by definition 2.1 the order of the sequence is p.
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2.3 Some Modifications Of ADM

In this section, some modifications of ADM are presented [34, ?].

2.3.1 Modified Adomian Method

Power series solutions of linear homogeneous differential equations yield sim-

ple recurrence relations for the coefficients, but they are not suitable for nonlinear

equations in general. Consider the result from [8, 34]

N(
∞∑
n=0

cnx
n) =

∞∑
n=0

xnAn(c0, c1, . . . , cn)

from the recent theorem of Adomian and Rach on transformation of series and An are

Adomian polynomials. Since ADM gives solutions of the general equation u−Nu =

f using his decompositions u =
∑∞

n=0 un, and N(u) =
∑∞

n=0An(u0, u1, . . . , un). If u

is given as power series u =
∑∞

n=0 cnx
n, by identifying each component un of u with

the component cnx
n of the power series, this gives

An(u0, u1, u2, . . . , un) = xnAn(c0, c1, c2, . . . , cn) (2.3.1)

If we return to the formula(2.1.10) and finding the Adomian polynomials by substi-

tuting each component un with the component cnx
n of the power series we get

A0(u0) = N(u0) = N(c0x
0) = N(c0) = A0(c0)

A1(u0, u1) = u1N
′(u0) = c1x

1N ′(c0x
0) = x1c1N

′(c0) = xA1(c0, c1)

A2(u0, u1, u2) = u2N
′(u0) +

u21
2!
N ′′(u0) = c2x

2N ′(c0x
0) + (c1x1)2

2!
N ′′(c0x

0)

= x2c2N
′(c0) + x2 (c1)2

2!
N ′′(c0) = x2(c2N

′(c0) + (c1)2

2!
N ′′(c0)) = x2A2(c0, c1, c2)

A3(u0, u1, u2, u3) = u3N
′(u0) + 2u1u2

2!
N ′′(u0) +

u31
3!
N ′′′(u0)

= c3x
3N ′(c0x

0)+2(c1x1)(c2x2)
2!

N ′′(c0x
0)+ (c1x1)3

3!
N ′′′(c0x

0) = x3c3N
′(c0)+2(c1x)(c2x2)

2!
N ′′(c0)+
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(c1x)3

3!
N ′′′(c0) = x3[c3N

′(c0) + 2c1c2
2!
N ′′(c0) + (c1)3

3!
N ′′′(c0)] = x3A3(c0, c1, c2, c3)

...

then by mathematical induction we can get relation (2.3.1).

If the series
∑∞

n=0 cnx
n is convergent then the series

∑∞
n=0 x

nAn(c1, c2, . . . , cn) is

convergent.

We will show how can we apply this modification in example at the end of this

section.

2.3.2 Wazwaz Modifications

Another modifications to ADM was proposed by Wazwaz[40, 8, 9].

The New Modification

In the new modification Wazwaz replace f = L−1g by a series of infinite

components.

f =
∞∑
n=0

fn.

So the new recursive relationship is presented in the form

u0 = f0

un+1 = fn − L−1Run − L−1(An), for n = 0, 1, 2, · · ·

The benefit of this method is the size of calculations is minimized compared to stan-

dard ADM and this reduction facilitates the construction of Adomian polynomials

for nonlinear operators.
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Reliable Modification

This method is based on splitting f into two parts f = f0 +f1. Consequently,

the recursive relation

u0 = f0

u1 = f1 − L−1Ru0 − L−1A0

un+2 = −L−1Run+1 − L−1An+1, for n = 0, 1, 2, · · ·

Since this variation is not very large but it plays a major role in accelerating the

convergence of the solution and it minimize the size of calculations. The success of

this modification depends on the choice of f0 and f1, and this come from trials.

2.3.3 Two-Step Adomian Method

The main ideas of Two Step Adomian Method (TSADM) was discussed in

[40, 8, 9] and the two steps are written below:

Step1: Using the given conditions, we obtain

Φ = φ+ L−1g

where the function φ represents the terms arising from using the given conditions,

all are assumed to be prescribed. We set

Φ = Φ0 + Φ1 + · · ·+ Φm

where Φ0,Φ1, . . . ,Φmare the terms arising from integrating the source term g. We

define

u0 = Φk + · · ·+ Φk+s
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where k = 0, 1, . . . ,m, s = 0, 1, . . . ,m − k. Then we verify that u0 satisfies the

original equation and the given conditions by substitution, once the exact solution

is obtained we finish. Otherwise, we go to step two.

Step2: We set u0 = Φ and continue with the standard Adomian recursive relation

un+1 = −L−1(An).

Compared to the standard Adomian method and the modified method, we can see

that the two-step Adomian method may provide the solution by using one iteration

only. Further, the (TSADM) avoids the difficulties arising in the modified method.

Furthermore, the number of terms in Φ namely m, is small in many practical prob-

lems.

The example below will be solved by the standard ADM, modified Adomian method,

the new modification, reliable modification and Two-Step Adomian Method. This

example will show how these modifications of the Adomian decomposition method

give the exact solution with iterations than that found by using the standard method.

Example 2.3.1. [9] Consider the equation

y′ − y = x cos(x)− x sin(x) + sin(x), (2.3.2)

subject to the initial condition y(0) = 0.

Standard ADM

In this example L = d
dx

so rewrite (2.3.2) in operator form

L(y) = Ry + g (2.3.3)

Where Ry = y is the remainder linear term and g = xcosx− xsinx+ sinx.

Applying L−1 =
∫ x

0
(.)ds to both sides of equation (2.3.3)

L−1L(y) = L−1Ry + L−1g∫ x

0

(y′)ds = y(s) |x0= L−1Ry + L−1g
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y − y(0) = L−1(y) + L−1(x cos(x)− x sin(x) + sin(x))

then,

y − y(0) =

∫ x

0

y(s)ds+

∫ x

0

(s cos(s)− s sin(s) + sin(s))ds (2.3.4)

to find the integral
∫ x

0
(s cos(s) − s sin(s) + sin(s))ds we use integration by parts∫ x

0
(s cos(s) − s sin(s) + sin(s))ds = s sin(s) |x0 − cos(s) |x0 +s cos(s) |x0 − sin(s) |x0

+ cos(s) |x0= x sin(x)− cos(x) + 1 + x cos(x)− sin(x) + cos(x)− 1

= x sin(x) + x cos(x)− sin(x), and substituting it in (2.3.4) to get

y = L−1(y) + x sin(s) + x cos(x)− sin(x),

substituting the decomposition series y(x) =
∑∞

n=0 yn(x) in equation above

∞∑
n=0

yn(x) = L−1(
∞∑
n=0

yn(x)) + x sin(x) + x cos(x)− sin(x)

Thus the recursive relationship is given as follows

y0 = x sin(s) + x cos(x)− sin(x)

yn+1 = L−1(yn)

Then the first three terms are( all the following integration are found by using inte-

gration by parts):

y1 = L−1(y0) =

∫ x

0

(s sin(s) + s cos(s)− sin(s))ds

= −x cos(x) + sin(x) + x sin(x) + 2 cos(x)− 2

y2 = L−1(y1) =

∫ x

0

(−s cos(s) + sin(s) + s sin(s) + 2 cos(s)− 2)ds

= −x sin(x)− 2 cos(x) + 3 sin(x)− x cos(x)− 2x+ 2

y3 = L−1(y2) =

∫ x

0

(−s sin(s)− 2 cos(s) + 3 sin(s)− s cos(s)− 2s+ 2)ds

= x cos(x)− 3 sin(x)− x sin(x)− cos(x) + 2x− x2 + 1
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thus,

y = y0 + y1 + y2 + y3 + · · ·

= x sin(x) +x cos(x)− sin(x)−x cos(x) + sin(x) +x sin(x) + 2 cos(x)−2−x sin(x)−

2 cos(x) + 3 sin(x)−x cos(x)−2x+ 2 +x cos(x)−3 sin(x)−x sin(x)− cos(x) + 2x−

x2 + 1 + · · ·

after many iterations, y = x sin(x) will be the solution of example (2.3.1) and the

other terms are canceled with each other.

By Modified Adomian Method

Assume that yn =
∑∞

n=0 cnx
n and g = xcosx− xsinx + sinx =

∑∞
n=0 bnx

n. Substi-

tuting these values in (2.3.2)

∞∑
n=0

cnx
n = y(0) + L−1(

∞∑
n=0

cnx
n) + L−1(

∞∑
n=0

bnx
n). (2.3.5)

Since L−1 =
∫ x

0
(.)ds, then

L−1(
∞∑
n=0

cnx
n)ds =

∞∑
n=0

∫ x

0

(cns
n)ds =

∞∑
n=0

cn
xn+1

n+ 1
.

Therefor, equation(2.3.5) is given by

∞∑
n=0

cnx
n = y(0) + (

∞∑
n=0

(bn + cn)

n+ 1
xn+1),

then,
∞∑
n=0

cnx
n = y(0) + (

∞∑
n=1

(bn−1 + cn−1)

n
xn)

the recursive terms are given by

c0 = y(0) = 0

cn+1 = bn−1+cn−1

n
.

Taylor series expansion of g is

g = x cos(x)− x sin(x) + sin(x) = x(1− x2

2!
+
x4

4!
+ · · · )− x(x− x3

3!
+
x5

5!
− · · · )

+ (x− x3

3!
+
x5

5!
− · · · ) = 2x− x2 − 4x3

3!
− x4

3!
+

6x5

5!
− x6

5!
+ · · · .
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By considering the assumption g =
∑∞

n=1 bnx
n and by matching the terms of this

assumption with the opposite terms from above equation we get

b0 = 0

b1 = 1

b2 = −1

b3 =
−4

3!

b4 =
−1

6

b5 =
6

5!
...

so to find the terms of y(x), we need to determine the cn’s

c1 =
b0 + c0

1
=

0

1
= 0

c2 =
b1 + c1

2
=

2 + 0

2
= 1

c3 =
b2 + c2

3
=
−1 + 1

3
= 0

c4 =
b3 + c3

4
=
−4/3!

4
= − 1

3!

c5 =
b4 + c4

5
=
−1/6 + 1/6

5
= 0

c6 =
b5 + c5

6
=

6/5! + 0

6
=

1

5!
...

the exact solution is

y(x) =
∑∞

n=1 cnx
n = c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + c5x
5 + c6x

6 + · · ·

= 0 + 0 + x2 − x4

3!
+ x6

5!
+ · · · = x(x− x3

3!
+ x5

5!
− · · · ) = xsinx
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By Reliable Modification

let f1 = x sin(x) and f2 = x cos(x)−sin(x), then the first two terms of yn’s are given

by

y0 = f1 = x sin(x)

y1 = f2+L−1(y0) = x cos(x)−sin(x)+

∫ x

0

(s sin(s))ds = x cos(x)−sin(x)−x cos(x)+sin(x) = 0

Then yn+1 = 0 for n = 1, 2, 3, . . . , so the exact solution is y(x) = x sin(x)

By The New Modification

Since f(x) = x sin(x) + x cos(x)− sin(x), Taylor series of f(x) is

f(x) = x2 − 2x3

3!
− x4

3!
+

4x5

5!
+
x6

5!
− · · ·

so the recursive relationship is

y0 = f0(x) = x2

y1 = f1(x) + L−1y0 = −2x3

3!
+

∫ x

0

(s2)ds

= −2x3

3!
+
x3

3
= 0

y2 = f2(x) + L−1y1 = −x
4

3!
+

∫ x

0

(0)ds

= −x
4

3!

y3 = f3(x) + L−1y2 =
4x5

5!
+

∫ x

0

(s4/3!)ds

=
4x5

5!
+

x5

5 ∗ 3!
= 0

...

so

y(x) = x2 − x4

3!
+
x6

5!
− · · · = x(x− x3

3!
+
x5

5!
− · · · ) = x sin(x)

By TSMADM

From the integration of g(x) = x cos(x) − x sin(x) + sin(x) we get φ = x sin(x) +
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x cos(x) − sin(x) so let φ = φ0 + φ1 + φ2 where φ0 = x sin(x), φ1 = x cos(x) and

φ2 = − sin(x), each of them satisfies the initial condition y(0) = 0 so if we choose

φ0 = y0(x) we get the exact solution because y(x) = x sin(x) satisfies the initial value

problem described in example(2.3.1).



CHAPTER 3

Applications on ADM

The ADM gives the accurate and efficient solution for wide class of linear

and nonlinear equations without the need to resort to linearization or perturbation

approaches. In this chapter we will show firstly how ADM can apply to solve linear

and nonlinear initial value problems of ordinary differential equations, boundary

value ordinary differential equations and system of ordinary differential equations.

Then we will use the ADM to find the solution of partial differential equations of

first order, second order especially heat and wave equations and equations of higher

order. At the end of this chapter, we will give examples of solving integral equations

with ADM.



3.1. Ordinary Differential Equation 22

3.1 Ordinary Differential Equation

In this section we will apply the ADM to linear and nonlinear ordinary dif-

ferential equations[2]. Consider the nonlinear first order initial value differential

equation

u′ +Nu+Ru = g

u(x0) = c0 (3.1.1)

Where N is the nonlinear term, R is the remainder linear term and g is a given

function. In this caseL = d
dx

so L−1 =
∫ x
x0

(.)ds, for (3.1.1) take L−1 to both sides

L−1Lu = L−1g − L−1Nu− L−1Ru∫ x

x0

(u′)ds = L−1g − L−1Nu− L−1Ru

u(x)− u(x0) = L−1g − L−1Nu− L−1Ru

u(x) = u(x0) + L−1g − L−1Nu− L−1Ru (3.1.2)

The ADM gives the solution u as an infinite series u(x) =
∑∞

n=0 un(x) and the

nonlinear term Nu =
∑∞

n=0An where An’s is the Adomian polynomials. So (3.1.2)

become

∞∑
n=0

un = u(x0) + L−1g − L−1

∞∑
n=0

An − L−1

∞∑
n=0

Run

From this equation we can get an algorithm to find the values of un’s as follows

u0 = u(x0) + L−1g

un+1 = −L−1(An +Run), n = 0, 1, 2, · · ·
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3.1.1 Second Order initial value Ordinary differential equa-

tion

In this section we will use the ADM to solve initial value ordinary differential

equation of second order and then we will give generalization to solve initial value

ordinary differential equations of any order [2].

Consider the initial value differential equation in Adomian method operator

Lu+Nu+Ru = g

u(x0) = c0, u′(x0) = c1. (3.1.3)

Where L = d2

dx2
and so L−1 =

∫ x
x0

∫ x
x0

(.)dsds. By applying L−1 to both sides of (3.1.3)

we have

L−1Lu(x) =

∫ x

x0

∫ x

x0

(u′′(s))dsds =

∫ x

x0

(u′(s)− u′(x0))ds = u(s) |xx0 −u
′(x0)(s) |xx0

= u(x)− u(x0)− u′(x0)(x− x0) = L−1g − L−1Nu− L−1Ru

then,

u(x) = u(x0) + u′(x0)(x− x0) + L−1g − L−1Nu− L−1Ru (3.1.4)

Substituting u(x) =
∑∞

n=0 un(x) and Nu =
∑∞

n=0An in (3.1.4) to obtain

∞∑
n=0

un = u(x0) + u′(x0)(x− x0) + L−1g − L−1

∞∑
n=0

An − L−1

∞∑
n=0

Run

Then the un’s terms can be found by using the following recursive relationship

u0 = u(x0) + u
′
(x0)(x− x0) + L−1g

un+1 = −L−1

∞∑
n=0

An − L−1

∞∑
n=0

Run
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Example 3.1.1. (Anharmonic Oscillator)[3] Consider this equation

d2θ

dt2
+ k2sinθ = 0 (3.1.5)

with k2 = ω/l where ω is the angular frequency and l is the largest amplitude of

motion. Assuming θ(0) = c and θ′(0) = 0 so (ref26) in operator form is

Lθ +Nθ = 0 (3.1.6)

where L = d2

dt2
and Nθ = k2sinθ so L−1 =

∫ t
0

∫ t
0
(.)dsds. Apply L−1 to (3.1.6) we

have

L−1Lθ =

∫ t

0

∫ t

0

θ′′(τ)dτdτ

=

∫ t

0

θ′(τ) |t0 dτ

=

∫ t

0

(θ′(τ)− θ′(0))dτ

= θ(τ) |t0 −θ′(0)τ |t0 L−1Lθ + L−1Nθ = θ(t) + θ(0) + θ′(0)(t) + L−1Nθ = 0

so, we get

θ(t) = θ(0) + θ′(0)(t)− L−1Nθ (3.1.7)

Adomian decomposition method assume θ(t) is decomposed in infinite series θ(t) =∑∞
n=0 θn(t) and Nθ =

∑∞
n=0An. By substituting these series and the initial condi-

tions θ(0) = c and θ′(0) = 0 in (3.1.7) we have

∞∑
n=0

θn = c− L−1

∞∑
n=0

An

define θ0(t) = c, so the other terms are

θn+1(t) = −L−1An, n = 0, 1, 2, . . . (3.1.8)

To get the values of An’s we use the Adomian’s formula (2.1.10) then we can find

θn terms from 3.1.8. The first three terms of An’s and un’s are
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A0 = N(θ0) = N(c) = k2sin(c)

θ1 = −L−1A0 = −
∫ t

0

∫ t
0
(k2sin(c))dsds = −k2sin(c) t

2

2

A1 = 1
1!

d
dλ

[N(θ0 + θ1λ)]λ=0

= d
dλ

[k2sin(θ0 + θ1λ)]λ=0

= d
dλ

[k2sin(c− k2sin(c)(t2/2)λ)]λ=0

= k2cos(c− k2 t2

2
sin(c)λ) ∗ (−k2sin(c) t

2

2
) |λ=0

= −k4cos(c)sin(c) t
2

2

θ2 = −L−1A1 = −
∫ t

0

∫ t
0
(−k4cos(c)sin(c) s

2

2
)dsds = k4cos(c)sin(c) t

4

24

A2 = 1
2!

d2

dλ2
[N(θ0 + θ1λ+ θ2λ

2)]λ=0

= 1
2!

d2

dλ2
[k2sin(c− k2sin(c) t

2

2
λ+ k4cos(c)sin(c) t

4

24
λ2)]λ=0

= 1
2!

d
dλ

[k2con(c− k2sin(c)(t2/2)λ+ k4cos(c)sin(c) t
4

24
λ2)(−k2sin(c) t

2

2

+ 2k4cos(c)sin(c) t
4

24
λ)]λ=0

= 1
2!

[−k2sin(c) t
2

2
∗ −k2sin(c − k2 t2

2
sin(c)λ + 2k4cos(c)sin(c) t

4

24
λ) ∗ (−k2sin(c) t

2

2
+

2k4cos(c)sin(c) t
4

24
λ)+k2cos(c−k2sin(c) t

2

2
λ+k4cos(c)sin(c) t

4

24
λ)∗2t4cos(c)sin(c) t

4

24
+

2k4cos(c)sin(c) t
4

24
λ ∗ −k2sin(c− k2sin(c) t

2

2
λ+ k4cos(c)sin(c) t

4

24
λ) ∗ ((−k2cos(c) t

2

2
+

2k4cos(c)sin(c) t
4

24
λ) |λ=0

= 1
2!

[−k6sin3 t4

4
+ 2k6cos2(c)sin(c) t

4

24

θ3 = −L−1A2 = −
∫ t

0

∫ t
0
(−k6sin3(c) s

4

8
+ k6cos2(c)sin(c) s

4

24
)dsds

= 3k6sin3(c) t6

720
− k6cos2(c)sin(c) t6

720

= 3k6sin3(c) t
6

6!
− k6cos2(c)sin(c) t

6

6!

thus θ = θ1 + θ2 + θ3 + · · ·

Generalization:

Consider the initial value problem of order n in Adomian method operator form

Lu+Ru+Nu = g (3.1.9)

with initial conditions

u(0) = c0
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u′(0) = c1

u′′(0) = c2

u′′′(0) = c3

...

u(n−1)(0) = cn−1

where L = dn

dxn
is the linear operator of order n, N is the nonlinear term, R is the

remainder linear term and g is the source function of x. The inverse operator is

given by

L−1 =

∫ x

0

∫ x

0

∫ x

0

· · ·
∫ x

0

(.)dsdsds · · · ds

Take L−1 to equation(3.1.9) in order to get

u− φ = −L−1(Ru+Nu) + L−1g (3.1.10)

where φ is determined from the initial conditions

φ =



u(0), L = d
dx

;

u(0) + xu′(0), L = d2

dx2
;

u(0) + xu′(0) + x2

2!
u′′(0), L = d3

dx3
;

...

u(0) + xu′(0) + x2

2!
u′′(0) + · · ·+ xn−1

(n−1)!
u(n−1)(0), L = dn+1

dxn+1 .

From the algorithm of ADM u =
∑∞

n=0 un and Nu =
∑∞

n=0An. Eq (3.1.10) becomes

∞∑
n=0

un = φ+ L−1g − L−1(R
∞∑
n=0

un)− L−1(
∞∑
n=0

An)

The general algorithm to find the solution of initial value problems with any order

by using ADM is

u0 = φ+ L−1g,

un+1 = −L−1(Run)− L−1(An). n = 0, 1, 2, · · ·
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3.1.2 Second order Singular Initial Value Problem

In this section an efficient modification of ADM is introduced for solving

initial value problem in the second order ordinary differential equations[21].

Consider the general equation of second order singular initial value problem

y′′ +
2n

x
y′ +

n(n− 1)

x2
y +N(x, y) = g(x). n = 0, 1, 2, · · · (3.1.11)

with initial conditions

y(0) = α, y′(0) = β

where N(x, y) is nonlinear function, g(x) is given function and α and β are real

constants. In this problem we use the new definition of the differential operator

L = x−n
d2

dx2
x−ny (3.1.12)

and its inverse is

L−1 = x−n
∫ x

0

∫ x

0

sn(.)dsds

If we apply the differential operator defined in (3.1.12) to the function y we get the

left hand side of (3.1.11)

Ly = x−n
d2

dx2
x−ny = x−n

d

dx
(nxn−1y + xny′)

= x−n(nxn−1y′ + n(n− 1)xn−2y + nxn−1y′ + xny′′)

=
n

x
y′ +

n(n− 1)

x2
y +

n

x
y′ + y′′

= y′′ +
2n

x
y′ +

n(n− 1)

x2
y

so (3.1.11) in Adomian operator form is

Ly = g(x)−N(x, y)
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Take L−1 to both sides of equation above

L−1Ly = L−1(y′′ +
2n

x
y′ +

n(n− 1)

x2
y) = L−1g(x)− L−1N(x, y) (3.1.13)

the left hand side of this equation is

L−1(y′′ +
2n

x
y′ +

n(n− 1)

x2
y) = x−n

∫ x

0

∫ x

0

sn(y′′ +
2n

s
y′ +

n(n− 1)

s2
y)dsds

= x−n
∫ x

0

∫ x

0

(sny′′ + 2nsn−1y′ + n(n− 1)sn−2y)dsds

using integration by parts to find
∫ x

0
(sny′′)ds let

u = sn dv = y′′

du = nsn−1 v = y′

so
∫ x

0
(sny′′) = xny′ − n

∫ x
0

(sn−1y′)ds and the same for
∫ x

0
(sn−1y′)ds

let

u = sn−1 dv = y′

du = (n− 1)sn−2 v = y

so
∫ x

0
(sn−1y′) = xn−1y − (n − 1)

∫ x
0

(sn−2y)ds, thus by substituting these integral

values we get

x−n
∫ x

0

∫ x
0

(sny′′ + 2nsn−1y′ + n(n− 1)sn−2y)dsds

= x−n
∫ x

0
[sny′ − nsn−1y + n(n− 1)

∫ x
0

(sn−2y)ds

+2nsn−1y − 2n(n− 1)
∫ x

0
(sn−2y)ds+ n(n− 1)sn−2y]ds

= x−n
∫ x

0
(sny′ + nsn−1y)ds

= x−nsny(s) |x0 −n
∫ x

0
sn−1yds+ n

∫ x
0
sn−1yds) = x−nxn[y(s)] |x0= y(x)− y(0)

= y(x)− α

so equation(3.1.13) becomes

y(x)− α = L−1g(x)− L−1N(x, y)
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Assume that y(x) =
∑∞

n=0 yn and N(x, y) =
∑∞

n=0 An where An’s are the Adomian’s

polynomials so

∞∑
n=0

yn = α + L−1g(x)− L−1

∞∑
n=0

An

The recursive scheme to find the solution is

y0 = α + L−1g(x)

yn+1 = −L−1An. n = 0, 1, 2, . . . .

Example 3.1.2. Consider the nonlinear singular initial value problem

y′′ +
2

x
y′ + y3 = 6 + x6 (3.1.14)

with initial conditions

y(0) = 0, y′(0) = 0

(3.1.14) in ADM operator form is given by

Ly = g(x)−N(x.y) = (6 + x6)− y3 (3.1.15)

In this example n = 1 so L = x−1 d2

dx2
xy and its inverse L−1 = x−1

∫ x
0

∫ x
0
s(.)dsds.

Applying L−1 to both sides of (3.1.15) and from the previous section

L−1Ly = y(x)− y(0)

y − y(0) = L−1(6 + x6)− L−1(y3) (3.1.16)

the value of L−1(6 + x6) is

L−1(6 + x6) = x−1

∫ x

0

∫ x

0

s(6 + s6)dsds

= x−1

∫ x

0

(3s2 +
s8

8
)ds

= x−1(s3 +
s9

72
) |x0= x2 +

x8

72
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So after substituting the values of L−1(6 + x6), the initial condition y(0) = 0 and

using the assumptions of Adomian method Nu =
∑∞

n=0 An, (3.1.16) becomes

∞∑
n=0

yn = x2 +
x8

72
− L−1(

∞∑
n=0

An)

Using Wazwaz reliable modified method of ADM we have f0 = x2 and f1 = x8

72
and

from the equation (2.1.10) we get the following solution algorithm

y0 = x2

yn+1 =
x8

72
− L−1(An), n = 0, 1, 2, . . .

then the first term is

y1 = x8

72
− L−1(A0), since A0 = N(y0) = y3

0 = x6

and so

L−1(A0) = x−1
∫ x

0

∫ x
0
s(s6)dsds = x−1

∫ x
0
s8

8
ds = x−1( s

9

72
) |x0= x8

72

Thus

y1 =
x8

72
− x8

72
= 0

then all recursive terms are equal zero. The solution is y(x) = x2

3.1.3 Boundary Value Problems

In this section, we apply the ADM to obtain numerical solution to nonlinear

boundary value problem[2].

Example 3.1.3. [2] Consider the following nonlinear sixth order boundary value

problem:

u(6)(x) = e−xu2(x), 0 < x < 1 (3.1.17)
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with boundary conditions

u(0) = u′′(0) = u(4)(0) = 1

u(1) = u′′(1) = u(4)(1) = e

Solution:

Rewrite (3.1.17) in Adomian method operator form

Lu = e−xNu (3.1.18)

where L = d6

dx6
and Nu = u2(x). Applying

L−1 =

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

(.)dsdsdsdsdsds

to both sides of (3.1.18)

L−1Lu = L−1(e−xNu)∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

(
d6u

dx6
)dsdsdsdsdsds = L−1(e−xNu)∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

(
d5u

dx5
− d5u(0)

dx5
)dsdsdsdsds = L−1(e−xNu)∫ x

0

∫ x

0

∫ x

0

∫ x

0

(
d4u

dx4
− d4u(0)

dx4
− sd

5u(0)

dx5
)dsdsdsds = L−1(e−xNu)∫ x

0

∫ x

0

∫ x

0

(
d3u

dx3
− d3u(0)

dx3
− sd

4u(0)

dx4
− s2

2

d5u(0)

dx5
)dsdsds = L−1(e−xNu)∫ x

0

∫ x

0

(
d2u

dx2
− d2u(0)

dx2
− sd

3u(0)

dx3
− s2

2

d4u(0)

dx4
− s3

6

d5u(0)

dx5
)dsds = L−1(e−xNu)∫ x

0

(
du

dx
− du(0)

dx
− sd

2u(0)

dx2
− s2

2

d3u(0)

dx3
− s3

6

d4u(0)

dx4
− s4

24

d5u(0)

dx5
)ds = L−1(e−xNu).

Then,

u(x)− c1 − c2x−
c3

2
x2 − c4

6
x3 − c5

24
x4 − c6

120
x5 = L−1[e−xu2(x)] (3.1.19)

where c1 = u(0), c2 = du(0)
dx

, c3 = d2u(0)
dx2

, c4 = d3u(0)
dx3

, c5 = d4u(0)
dx4

and c6 = d5u(0)
dx5

.

So from the given boundary conditions for equation(3.1.17) we can find these values
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c1 = c3 = c5 = 1

and for the other unknown constants c2 = α, c4 = β and c6 = γ. Thus (3.1.19)

becomes

u(x) = 1 + αx+
1

2
x2 +

β

6
x3 +

1

24
x4 +

γ

120
x5 + L−1[e−xu2(x)] (3.1.20)

From ADM u(x) =
∑∞

n=0 un(x) and Nu =
∑∞

n=0An. Substituting in (3.1.20)

∞∑
n=0

un(x) = 1 + αx+
1

2
x2 +

β

6
x3 +

1

24
x4 +

γ

120
x5 + L−1[e−x

∞∑
n=0

An]

The algorithm to find u is (also by using Wazwaz reliable modified method of ADM

we have f0 = 1 and f1 = αx+ 1
2
x2 + β

6
x3 + 1

24
x4 + γ

120
x5) then

u0 = 1

u1 = αx+
1

2
x2 +

β

6
x3 +

1

24
x4 +

γ

120
x5 + L−1[e−xA0]

un+1 = L−1[e−xu2
n(x)], n = 0, 1, 2, 3, · · ·

Using the Adomian formula to obtain An’s polynomials we have

A0 = N(u0) = u2
0 = 1

then

L−1[e−xA0] = L−1[e−x] =

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

(e−s)dsdsdsdsdsds

= e−x +
x5

120
− x4

24
+
x3

6
− x2

2
+ x− 1

substitute this in u1 we get

u1 = −1 + (α + 1)x+ (β + 1)
x3

6
+ (γ + 1)

x5

120
+ e−x

If we approximate the solution by using the only these two terms u0 and u1.

u(x) = u0 + u1 = (α + 1)x+ (β + 1)
x3

6
+ (γ + 1)

x5

120
+ e−x
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By using the Taylor expansion of e−x = 1− x+ x2

2!
− x3

3!
+ · · · in the formula of u(x)

we have the final approximation formula of u(x)

u(x) ∼= u0 + u1 = 1 + αx+
x2

2!
+ β

x3

6
+
x4

24
+ γ

x5

120
+ · · ·

to find the values of α, β and γ we use the boundary conditions at x = 1 and putting

it in the formula of u(x) then

u(1) = 1 + α + 1
2

+ (1/6)(β) + (1/120)γ + · · · = e, 1

u′(x) = α + x+ β
2
x2 + x3

6
+ γ

24
x4 + · · · = e

u′′(x) = 1 + (β)x+ x2

2
+ γ

6
x3 + ...

⇒ u′′(1) = 1 + (β) + 1
2

+ γ
6

+ · · · = e, 2

u′′′(x) = (β) + x+ γ
2
x2 + · · ·

u(4)(x) = 1 + (γ)x+ · · · ⇒ u′′′′(1) = 1 + (γ) + · · · = e, 3

from 3 we can find the value of γ

γ = e− 1 = 1.71828183

Then from 2 we find β

β = e− 1− 1
2
− 1.71828183

6
= 0.93190153

finally α = e− 1.71828183
120

− 1− 0.5− 0.93190153
6

= 1.00697924

Thus

u(x) ∼= u0 + u1 = 1 + 1.00697924x+ x2

2!
+ 0.93190153x

3

6
+ x4

24
+ 1.71828183 x5

120
+ · · ·

3.1.4 Singular Boundary Value Problems

In this section, we will consider differential equations which possess a singularity[2,

36].
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Consider the general singular boundary value problem which has the following form

y(n+1) +
m

x
y(n) + q(x)N(y) = g(x), 0 ≤ x ≤ b (3.1.21)

y(0) = α0, y′(0) = α1, y′′(0) = α2, · · · ,

yn−1(0) = αn−1, y
′(b) = β n = 0, 1, 2, · · ·

where N(y) is the nonlinear term, g(x) is a given function. In order to apply the

ADM, let’s first write (3.1.21) in Adomian operator form

Ly + q(x)N(y) = g(x) (3.1.22)

where L is given by

L = x−1 d
n

dxn
x1+n−m d

dx
xm−n(.) (3.1.23)

if we apply this operator to y we get

Ly = x−1 d
n

dxn
x1+n−m d

dx
(xm−ny)

= x−1 d
n

dxn
x1+n−m[(m− n)xm−n−1y + xm−ny′]

= x−1 d
n

dxn
[(m− n)y + xy′]

= x−1 d
n−1

dxn−1
[(m− n)y′ + xy′′ + y′]

= x−1 d
n−1

dxn−1
[(m− n+ 1)y′ + xy′′]

= x−1 d
n−2

dxn−2
[(m− n+ 2)y′′ + xy′′′]

...

= x−1[xy(n) +my(n−1)] = [y(n) +
m

x
y(n−1)]

The inverse of L is given by

L−1 = xn−m
∫ x

b

sm−n−1

∫ x

0

∫ x

0

∫ x

0

s(.)dsds · · · ds (3.1.24)
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applying L−1 to both sides of (3.1.22)

L−1L(y) = y(x)− φ = L−1(g(x)− q(x)N(y)) (3.1.25)

where φ can be determined from the initial conditions. Use the assumptions of ADM

(3.1.25) becomes

∞∑
n=0

yn = φ+ L−1g(x)− L−1[q(x)
∞∑
n=0

An]

Thus the recursive relationship is

y0(x) = φ+ L−1g(x)

yn+1 = −L−1[q(x)An], n = 0, 1, 2, 3, · · ·

Example 3.1.4. [2] Consider this third order singular BVP

y′′′ − 2

x
y′′ = y + y2 + 7x2ex + 6xex − 6ex + x6e2x (3.1.26)

y(0) = y′(0) = 0, y′(1) = e.

In this problem n = 2, m = −2, b = 1 and N(y) = y2so

L = x−1 d
2

dx2
x5 d

dx
x−4(.) (3.1.27)

and its inverse is

L−1 = x4

∫ x

1

s−5

∫ x

0

∫ x

0

s(.)dsds (3.1.28)

if we apply the differential operator L that is defined in (3.1.27) to the function we
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obtain the left hand side of (3.1.26)

Ly = x−1 d
2

dx2
x5 d

dx
x−4(y)

= x−1 d
2

dx2
x5[(−4)x−5y + x−4y′]

= x−1 d
2

dx2
[(−4)y + xy′]

= x−1 d

dx
[(−4)y′ + xy′′ + y′]

= x−1 d

dx
[(−3)y′ + xy′′]

= x−1[(−2)y′′ + xy′′′]

= y′′′ − 2

x
y′′

applying L−1 to the operator form of (3.1.28)

L−1Ly = L−1(y +N(y) + 7x2ex + 6xex − 6ex + x6e2x)

the left hand side

L−1Ly = L−1(y′′′ − 2

x
y′′)

= x4

∫ x

1

s−5

∫ x

0

∫ x

0

s(y′′′ − 2

s
y′′)dsds

using integration by parts to the first term

u = s dv = y′′′

du = ds v = y′′∫ x
0
s(y′′′) = sy′′ |x0 −y′ |x0= sy′′ − y′ + y′(0)

L−1Ly = x4
∫ x

1
x−5

∫ x
0

[sy′′ − y′ + y′(0)− 2y′ + 2y′(0)]ds
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we use the same technique as above for first term

L−1Ly = x4

∫ x

1

s−5[sy′ − y + y(0)− y + y(0) + sy′(0)− 2y′ + 2y′]

= x4

∫ x

1

[s−4y′ − 4s−5y + 4y(0)s−5 + 3s−4y′(0)]

= x4[s−4y |x0 +4

∫ x

1

s−5y − 4

∫ x

1

s−5y − y(0)s−4 |x0 −y′(0)s−3 |x0 ]

= y − x4y(1) = y − 2.71828x4

after substituting the initial condition. Then, we have this relation

y − 2.71828x4 = L−1(y + y2 + 7x2ex + 6xex − 6ex + x6e2x)

Use the assumptions of the ADM

∞∑
n=0

yn = 2.71828x4 + L−1(
∞∑
n=0

yn +
∞∑
n=0

An + 7x2ex + 6xex − 6ex + x6e2x)

Thus the recursive relationship is

y0(x) = 2.71828x4 + L−1[7x2ex + 6xex − 6ex + x6e2x]

yn+1 = −L−1[yn + An], n = 0, 1, 2, · · ·

3.1.5 System of Ordinary Differential Equations

In this section we illustrate how the AMD is used to solve a system of first

order ordinary differential equations[12].

Consider the system of equations:

u′1 +N1(x, u1, u2, · · · , un) = g1

u′2 +N2(x, u1, u2, · · · , un) = g2

...

u′n +Nn(x, u1, u2, · · · , un) = gn (3.1.29)
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whereN1, N2, . . . , Nnare nonlinear functions, g1, g2, . . . , gn are known functions. Rewrite

(3.1.29) in operation form:

Lui +Ni(x, u1, u2, . . . , un) = gi, i = 1, 2, · · · , n (3.1.30)

Where L is the linear operator L = d
dx

and has an inverse L−1 =
∫ x

0
(.)ds. Applying

L−1 to equation (3.1.30) gives∫ x

0

(
dui
dx

)ds+ L−1Ni(x, u1, u2, · · · , un) = L−1gi, i = 1, 2, · · · , n

ui(x)− ui(0) + L−1Ni(x, u1, u2, · · · , un) = L−1gi, i = 1, 2, · · · , n (3.1.31)

The Adomian technique consists of approximating the solution of (3.1.31) by an

infinite series

ui =
∞∑
j=0

ui,j

and the nonlinear terms

Ni(x, u1, u2, · · · , un) =
∞∑
j=0

Ai,j(ui,0, ui,1, · · · , ui,j)

where Ai,j are the Adomian polynomials. Thus (3.1.31) become
∞∑
j=0

ui,j = ui(0)−
∞∑
j=0

L−1Ai,j(ui,0, ui,1, · · · , ui,j) + L−1gi, i = 1, 2, · · · , n (3.1.32)

then we define:

ui,0 = ui(0) + L−1gi

ui,n+1 = −L−1Ai,n(ui,0, ui,1, · · · , ui,n)

n = 0, 1, 2, · · · and i = 1, 2, · · ·

Example 3.1.5. [12] Consider the following nonlinear system of differential equa-

tions

u′1 = 2u2
2

u′2 = e−xu1

u′3 = u2 + u3 (3.1.33)
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with exact solutions u1(x) = e2x, u2(x) = ex and u3(x) = xex.

Applying L−1 =
∫ x

0
(.)ds to both sides of (3.1.33):

u1 − u1(0) =

∫ x

0

2u2
2ds

u2 − u2(0) =

∫ x

0

e−su1ds

u3 − u3(0) =

∫ x

0

(u2 + u3)ds (3.1.34)

from AMD assume that ui =
∑∞

n=0 ui,n(x) where i = 1, 2, 3 and from the first

equation of (3.1.33) the nonlinear term is

N2(x, u1, u2, u3) = u2
2 =

∑∞
n=0A2,n. Substituting these values in (3.1.34)

∞∑
n=0

u1,n(x) = 1 + 2
∞∑
n=0

∫ x

0

A2,nds

∞∑
n=0

u2,n(x) = 1 +
∞∑
n=0

∫ x

0

e−su1,nds

∞∑
n=0

u3,n(x) =
∞∑
n=0

∫ x

0

(u3,n + u2,n)ds

This leads to the following scheme:

u1,0 = 1 u1,n+1 = 2

∫ x

0

A2,nds

u2,0 = 1 u2,n+1 =

∫ x

0

e−su1,nds

u3,0 = 0 u3,n+1 =

∫ x

0

(u3,n + u2,n)ds

where n = 0, 1, 2, · · · . In order to determine A2,n we use the Adomian’s formula(2.1.10).

Then the first two iterations of approximate solutions of the system above are for

n = 0,

u1,1 = 2
∫ x

0
A2,0ds

A2,0 = N2(u2,0) = (u2,0)2 = 1

then u1,1 = 2
∫ x

0
1ds = 2x
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u2,1 =
∫ x

0
e−su1,0ds =

∫ x
0
e−sds = −e−x + 1

u3,1 =
∫ x

0
(u3,0 + u2,0)ds =

∫ x
0

1ds = x

for n = 1,

u1,2 = 2
∫ x

0
A2,1ds

A2,1 = 1
1!

d
dλ1

[N2(u2,0 + λu2,1)]λ=0

= 1
1!

d
dλ1

[(u2,0 + λu2,1)2]λ=0

= 1
1!

d
dλ1

[(u2
2,0 + λ2u2

2,1 + 2λu2,0u2,1)]λ=0

= 1
1!

d
dλ1

[1 + λ2(1− e−x) + 2λ(1− e−x)]λ=0

= [2(1− e−x)(−e−x) + 2λ+ 2λ(−e−x) + 2(1− λe−x)]λ=0

= −2e−x + 2

then,

u1,2 = 2
∫ x

0
(−2e−s + 2)ds = 4e−x + 4x− 4 u2,2 =

∫ x
0
e−su1,1ds

=
∫ x

0
e−s(2s)ds

= −2xe−x − 2e−x + 2

u3,2 =
∫ x

0
(u3,1 + u2,1)ds

=
∫ x

0
(s+−e−s + 1)ds = x2

2
− e−x + x+ 1

Thus u1, u2 and u3 are approximately given

u1 = u1,0 + u1,1 + u1,2 = 2x+ 4e−x + 4x− 3

u2 = u2,0 + u2,1 + u2,2 = −e−x − 2xe−x − 2e−x + 4

u3 = u3,0 + u3,1 + u3,2 = x+
x2

2
− e−x + x+ 1
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3.2 AMD For Solving Partial Differential Equa-

tion

It known that the nonlinear partial differential equations describe very large

branches of science and engineering applications. Much research like [7, 29, 8, 40]has

been worked to get numerical solutions of these types of problems when they have

some computational difficulties and usually roundoff error causes loss of accuracy

but the AMD need only few computation.

3.2.1 First Order nonlinear PDE

Refereing to [7], the most general form of nonlinear first order partial differ-

ential equation in one dimension

F (u, ux, ut, x, t) = 0

with initial condition:

u(x, 0) = f(x), ∀x ∈ Ω

and subject to the boundary condition:

u(x, t) = ψ(x, t), ∀x ∈ ∂Ω

where Ω is the region of solution and ∂Ω is the boundary of Ω.

The following examples illustrate how can we apply the ADM to solve first order

PDEs.

Example 3.2.1. [7] Consider the nonlinear hyperbolic equation

∂u

∂t
= u

∂u

∂x
, 0 < x ≤ 1 0 ≤ t ≤ 1 (3.2.1)

with initial condition:

u(x, 0) = x
10
, 0 < x ≤ 1
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The exact solution of this problem is

u(x, t) =
x

10− t

Solution using ADM

Rewrite (3.2.1) in operator form

Ltu = Nu (3.2.2)

where Lt = ∂
∂t

and its inverse is L−1
t =

∫ t
0
(.)dτ and Nu = u∂u

∂x
. Applying L−1

t to

both sides of (3.2.2) we obtain

L−1
t Ltu = L−1

t Nu∫ t

0

(
∂u

∂τ
)dτ = u(x, τ) |t0= L−1

t Nu

u(x, t)− u(x, 0) = L−1
t Nu

then,

u(x, t) = u(x, 0) + L−1
t Nu (3.2.3)

after that substitute u(x, t) =
∑∞

n=0 un(x, t) and Nu =
∑∞

n=0An and the initial

condition u(x, 0) = x
10

in (3.2.3)

∞∑
n=0

un(x, t) =
x

10
+ L−1

t

∞∑
n=0

An

Thus, the recursive scheme is

u0(x, t) =
x

10

un+1(x, t) = L−1
t An, n = 0, 1, 2, 3, · · ·

to determine the Adomian polynomials An’s we use the Adomian formula(2.1.10).
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Where Nu = u∂u
∂x

, so the first four Adomian polynomials and series terms are

A0 = N(u0) = u0
∂u0

∂x
=

x

10

1

10

u1 = L−1
t A0 =

∫ t

0

(
x

102
)dτ =

xt

102

A1 =
1

1!

d

dλ
[N(u0 + u1λ)]λ=0 =

1

1!

d

dλ
[(u0 + u1λ)

∂(u0 + u1λ)

∂x
]λ=0

=
d

dλ
[(
x

10
+

xt

102
λ)(

1

10
+

t

102
)]λ=0 =

d

dλ
[
x

102
+
λxt

103
+
λxt

103
+
λ2xt

104
]λ=0

= [
xt

103
+

xt

103
+

2λxt

104
]λ=0 =

2xt

103

u2 = L−1
t A1 =

∫ t

0

(
2xτ

103
)dτ =

xt2

103

A2 =
1

2!

d2

dλ2
[N(u0 + u1λ+ u2λ

2)]λ=0

=
1

2!

d2

dλ2
[(u0 + u1λ+ u2λ

2)
∂(u0 + u1λ+ u2λ

2)

∂x
]λ=0

=
1

2!

d2

dλ2
[(
x

10
+

xt

102
λ+

xt2

103
λ2)

∂( x
10

+ xt
102
λ+ xt2

103
λ2)

∂x
]λ=0

=
3xt2

104

u3 = L−1
t A2 =

∫ t

0

(
3xτ 2

104
)dτ =

xt3

104

A3 =
1

3!

d3

dλ3
[N(u0 + u1λ+ u2λ

2 + u3λ
3)]λ=0

=
1

3!

d3

dλ3
[(u0 + u1λ+ u2λ

2 + u3λ
3)
∂(u0 + u1λ+ u2λ

2 + u3λ
3)

∂x
]λ=0

=
1

3!

d3

dλ3
[(
x

10
+

xt

102
λ+

xt2

103
λ2 +

xt3

104
λ3)

∂( x
10

+ xt
102
λ+ xt2

103
λ2 + xt3

104
λ3)

∂x
]λ=0

=
4xt3

105

u4 = L−1
t A3 =

∫ t

0

(
4xτ 3

105
)dτ =

xt4

105
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Thus

u(x, t) =
∞∑
n=0

un(x, t)

= u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + u4(x, t) + · · ·

=
x

10
+

xt

102
+
xt2

103
+
xt3

104
+
xt4

105
+ · · ·

=
x

10
[1 +

t

10
+

t2

102
+

t3

103
+

t4

104
+ · · · ]

the series in the brackets above is a geometric series and its sum is∑∞
n=0(t/10)n = 1

1− t
10

, then

u(x, t) =
∞∑
n=0

un(x, t) =
x/10

1− t
10

=
x

10− t

which is the exact solution.

Example 3.2.2. [7] Consider this problem

∂u

∂t
= x2 − 1

4
(
∂u

∂x
)2, 0 < x ≤ 1 0 ≤ t ≤ 1 (3.2.4)

with initial condition:

u(x, 0) = 0, 0 < x ≤ 1

The exact solution of this problem is

u(x, t) = x2tanh(t)

(3.2.4) in decomposition method operator form is

Ltu = g(x) +Nu (3.2.5)

where Lt = ∂
∂t

and its inverse is L−1
t =

∫ t
0
(.)dτ , Nu = −1

4
(∂u
∂x

)2and g(x) = x2.

Applying L−1
t to both sides of (3.2.5)

L−1
t Ltu = L−1

t g(x) + L−1
t Nu∫ t

0

(
∂u

∂τ
)dτ = u(x, τ) |t0= L−1

t g(x) + L−1
t Nu

u(x, t)− u(x, 0) = L−1
t g(x) + L−1

t Nu
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then,

u(x, t) = u(x, 0) + L−1
t g(x) + L−1

t Nu

Substitute u(x, t) =
∑∞

n=0 un(x, t) and Nu =
∑∞

n=0An and the initial condition in

the equation above, we get

∞∑
n=0

un(x, t) = x2t+ L−1
t

∞∑
n=0

An

Thus, the recursive solution terms are

u0(x, t) = x2t

un+1(x, t) = L−1
t An, n = 0, 1, 2, · · · (3.2.6)

According to Adomian formula(2.1.10) we find these values of An’s and then we can
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find un’s terms from relation (3.2.6)

A0 = N(u0) = −1

4
(
∂u0

∂x
)2 = −x2t2

u1 = L−1
t A0 =

∫ t

0

(−x2τ 2)dτ =
−1

3
x2t3

A1 =
1

1!

d

dλ
[N(u0 + u1λ)]λ=0 =

1

1!

d

dλ
[(−1

4
(
∂(u0 + u1λ)

∂x
)2]λ=0

=
d

dλ
[(−1

4
(2xt− 2

3
xt3λ))2]λ=0 =

2

3
x2t4

u2 = L−1
t A1 =

∫ t

0

(
2

3
x2τ 4)dτ =

2

15
x2t5

A2 =
1

2!

d2

dλ2
[N(u0 + u1λ+ u2λ

2)]λ=0

=
−1

9
x2t6 +

−4

15
x2t6 =

−51

135
x2t6

u3 = L−1
t A2 =

∫ t

0

(
−51

135
x2τ 6)dτ =

−51

945
x2t7

=
−17

315
x2t7

A3 =
1

3!

d3

dλ3
[N(u0 + u1λ+ u2λ

2 + u3λ
3)]λ=0

=
4

45
x2t8 +

34

315
x2t8 =

62

315
x2t8

u4 = L−1
t A3 =

∫ t

0

(
62

315
x2τ 8)dτ =

62

2835
x2t9

Thus

u(x, t) =
∞∑
n=0

un(x, t)

= u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + u4(x, t) + · · ·

= x2t+
−1

3
x2t3 +

2

15
x2t5 +

−17

315
x2t7 +

62

2835
x2t9 + · · ·

= x2[t+
−1

3
t3 +

2

15
t5 +

−17

315
t7 +

62

2835
t9 + · · · ] = x2 tanh(t)

which is the exact solution.
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3.2.2 Second Order PDE’s

In this section we consider the ADM to solve linear and nonlinear heat[14, 27]

and wave equations[15].

Consider the linear heat equation

∂u

∂t
=
∂2u

∂x2
+ q(x, t) (3.2.7)

where 0 < x < 1 and 0 < t ≤ T

with initial condition

u(x, 0) = f(x), 0 < x < 1

and with nonlocal boundary conditions

u(0, t) =
∫ 1

0
φ(x, t)u(x, t)dx+ g1(t)

u(1, t) =
∫ 1

0
ψ(x, t)u(x, t)dx+ g2(t), 0 < t ≤ T

where f(x), g1(t), g2(t), φ(x, t)and ψ(x, t) are given smooth functions, and T is

constant.

Using the ADM technique to solve this kind of problems gives results with high

accuracy and much closer to the exact solution or it gives the exact solution.

Rewrite (3.2.7) in ADM operator form we get

Ltu = Lxxu+ q(x, t) (3.2.8)

where Lt = ∂
∂t

and its inverse is L−1
t =

∫ t
0
(.)dτ and Lxx = ∂2

∂x2
. Take L−1

t to both

sides of (3.2.8)

L−1
t Ltu = L−1

t (Lxxu+ q(x, t))∫ t

0

(
∂u

∂τ
)dτ = u(x, τ) |t0= L−1

t (Lxxu+ q(x, t))

u(x, t)− u(x, 0) = L−1
t (Lxxu+ q(x, t))
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then,

u(x, t) = f(x) + L−1
t (Lxxu+ q(x, t)).

Substituting the decomposition series u(x, t) =
∑∞

n=0 un(x, t) we obtain

∞∑
n=0

un(x, t) = f(x) + L−1
t (Lxx

∞∑
n=0

un(x, t) + q(x, t))

Thus, the algorithm of the solution is

u0(x, t) = f(x) + L−1
t q(x, t)

un+1(x, t) = L−1
t Lxxun, n = 0, 1, 2, · · · (3.2.9)

Example 3.2.3. [14] Consider the following equation:

∂u

∂t
=
∂2u

∂x2
+
−2(x2 + t+ 1)

(t+ 1)3

where 0 < x < 1 and 0 < t ≤ 1

with initial condition

u(x, 0) = x2

and with nonlocal boundary conditions

u(0, t) =
∫ 1

0
xu(x, t)dx+ 1

4(t+1)2

u(1, t) =
∫ 1

0
xu(x, t)dx+ 3

4(t+1)2
, 0 < t ≤ 1

the exact solution is u(x, t) = x2

(t+1)2
.

We use (3.2.9) to get the solution iterations

u0(x, t) = x2 + L−1
t

−2(x2 + t+ 1)

(t+ 1)3

= x2 +

∫ t

0

−2(x2 + τ + 1)

(τ + 1)3
dτ

= x2 +

∫ t

0

−2x2

(τ + 1)3
dτ +

∫ t

0

−2(τ + 1)

(τ + 1)3
dτ

= x2 +
x2

(τ + 1)2
|t0 +

2

(τ + 1)
|t0

=
x2

(t+ 1)2
+

2

(t+ 1)
− 2
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and

un+1(x, t) = L−1
t Lxxun, n =, 1, 2, · · ·

for n = 1,

u1 = L−1
t Lxxu0 = L−1

t ( 2
(t+1)2

=
∫ t

0
( 2

(τ+1)2
)dτ = −2

(t+1)
+ 2

and

u2 = L−1
t Lxxu1 = L−1

t (0) = 0

Thus un = 0 for all n = 2, 3, · · · .

The final result is

u(x, t) = u0 + u1 =
x2

(t+ 1)2
+

2

(t+ 1)
− 2 +

−2

(t+ 1)
+ 2 =

x2

(t+ 1)2

which is the exact solution of this problem.

Example 1. (Linear Heat equation with Dirichlet boundary conditions[33])

Consider the following linear heat equation subject to Dirichlet BC’s:

∂u

∂t
− ∂2u

∂x2
− hu = 0 0 < x < π, t > 0,

u(0, t) = 0, u(π, t) = 1 t ≥ 0,

u(x, 0) = 0, 0 < x < π.(3.2.10)

where h is a constant, h > 0.

Solution: The ADM operator form of (3.2.10) is given by

Ltu = Lxxu+Ru (3.2.11)

where Lt = ∂
∂t

, Lxx = ∂2

∂x2
and the remainder linear term Ru = hu. Applying

L−1
xx =

∫ x
0

∫ x
0

(.)dsds on both sides of (3.2.11)

L−1
xxLxxu = L−1

xxLtu+ L−1
xxRu∫ x

0

∫ x

0

(uxx)dsds = L−1
xxLtu+ L−1

xxRu∫ x

0

(ux(s, t)− ux(0, t))dsds = L−1
xxLtu+ L−1

xxRu

u(s, t) |x0 −ux(0, t)s |x0= L−1
xxLtu+ L−1

xxRu
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then,

u(x, t)− u(0, t)− ux(0, t)x = L−1
xxLtu+ L−1

xxRu. (3.2.12)

From the boundary condition u(0, t) = 0, but ux(0, t) is not given we can use the

boundary condition u(π, t) = 1 to get it. Using (3.2.12) at x = π we get that

u(π, t)− ux(0, t)π = L−1
xxLtu(π, t) + L−1

xxR(π, t)

ux(0, t)π = u(π, t)−
∫ π

0

∫ π
0
Ltu(π, t)dsds−

∫ π
0

∫ π
0
hu(π, t) = 1−0−hπ2

2
, then we have

ux(0, t) =
1

π
− hπ

2
,

substituting these values in (3.2.12) we have

u(x, t) = [
1

π
− hπ

2
]x+ L−1

xxLtu+ L−1
xxRu.

According to the ADM, the solution u(x, t) =
∑∞

n=0 un(x, t). Thus (3.2.12) in series

form is

∞∑
n=0

un(x, t) = [
1

π
− hπ

2
]x+ L−1

xxLt

∞∑
n=0

un(x, t) + L−1
xxR

∞∑
n=0

un(x, t).

Thus, the algorithm of the solution is

u0(x, t) = [
1

π
− hπ

2
]x,

un+1(x, t) = L−1
xx (Ltun +Run) n = 0, 1, 2, · · · .

For simplification, replace the constant [ 1
π
−hπ

2
] with k, thus the first three iterations
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are

u1 = L−1
xx (Ltu0 +Ru0) = L−1

xx (0 + hkx) =

∫ x

0

∫ x

0

(hks)dsds

= hk
s2

2
|x0= hk

x2

2
.

u2 = L−1
xx (Ltu1 +Ru1) = L−1

xx (0 + k(h)2x
2

2
) =

∫ x

0

∫ x

0

(k(h)2 s
2

2
)dsds

= k(h)2 s
4

4!
|x0= k(h)2x

4

4!
.

u3 = L−1
xx (Ltu0 +Ru1) = L−1

xx (0 + k(h)3x
4

4!
) =

∫ x

0

∫ x

0

(k(h)3 s
4

4!
)dsds

= k(h)3 s
6

6!
|x0= k(h)3x

6

6!
.

we can conclude that the nth term is given by

un = k(h)n
x2n

(2n)!
.

Thus,

u(x, t) = u0 + u1 + u2 + u3 + · · ·+ un + · · ·

= kx+ hk
x2

2
+ k(h)2x

4

4!
+ k(h)3x

6

6!
+ · · ·+ k(h)n

x2n

(2n)!
+ · · ·

= k

∞∑
n=0

(h)n
x2n

(2n)!

= [
1

π
− hπ

2
]

∞∑
n=0

(h)n
x2n

(2n)!
.

Example 2. (Nonlinear heat equation[27]) Consider the nonlinear heat equation

described by

∂u

∂t
= (A(u)ux)x + C(u) (3.2.13)

u(x, 0) = g(x)

where A(u) and C(u) are arbitrary given functions.

In the operator form, equation(3.2.13) can be written as

Ltu = N(u) (3.2.14)
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where Lt = ∂
∂t

and its inverse is L−1
t =

∫ t
0
(.)dτ and

N(u) = (A(u)ux)x + C(u). Take L−1
t to both sides of (3.2.14)

L−1
t Ltu = L−1

t (N(u))∫ t

0

(
∂u

∂τ
)dτ = u(x, τ) |t0= L−1

t (N(u))

u(x, t)− u(x, 0) = L−1
t (N(u))

then,

u(x, t) = g(x) + L−1
t (N(u))

Substituting u(x, t) =
∑∞

n=0 un(x, t), Nu =
∑∞

n=0An and the initial condition in

equation above to obtain

∞∑
n=0

un(x, t) = g(x) + L−1
t

∞∑
n=0

An

Thus, the recursive scheme is given by

u0(x, t) = g(x)

un+1(x, t) = L−1
t An, n = 0, 1, 2, · · ·
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Wave Equation

In this section we will study the solution of linear and nonlinear wave equations

subject to initial conditions and with well defined boundary conditions using the

ADM,[29].

Example 3. (Linear wave equation[29]) Consider the following linear wave equation

∂2u

∂t2
=
∂2u

∂x2
0 < x < π, t > 0,

u(0, t) = u(π, t) = 0 t > 0,

u(x, 0) = sin3(x) 0 < x < π

ut(x, 0) = sin(2x) 0 < x < π. (3.2.15)

Solution:

Rewrite (3.2.15) in ADM operator form

Lttu = Lxxu, (3.2.16)

where Ltt = ∂2

∂t2
and Lxx = ∂2

∂x2
. Operating each side of (3.2.16) by L−1

tt =
∫ t

0

∫ t
0
(.)dτdτ

L−1
tt Lttu = L−1

tt Lxxu∫ t

0

∫ t

0

(
∂2u(x, τ)

∂t2
)dτdτ = L−1

tt Lxxu∫ t

0

(
∂u(x, τ)

∂t
|τ0)dτ = L−1

tt Lxxu∫ t

0

(
∂u(x, τ)

∂t
− ∂u(x, 0)

∂t
)dτ = L−1

tt Lxxu

u(x, τ) |τ0 −ut(x, 0)τ |τ0= L−1
tt Lxxu

then,

u(x, t)− u(x, 0)− ut(x, 0)t = L−1
tt Lxxu.
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Substituting the initial conditions we have

u(x, t) = sin3(x) + t sin(2x) + L−1
tt Lxxu.

Decompose the solution into infinite series

∞∑
n=0

un(x, t) = sin3(x) + t sin(2x) + L−1
tt Lxx

∞∑
n=0

un(x, t).

Then we get this algorithm of solution

u0(x, t) = sin3(x) + t sin(2x)

un(x, t) = L−1
tt Lxxun(x, t) n = 0, 1, 2, 3, . . . .

For the previous equation, the first two iterations are

u1 = L−1
tt Lxxu0(x, t) = L−1

tt

∂

∂x
[3 sin2(x) cos(x) + 2t cos(2x)]

=

∫ t

0

∫ t

0

[6 sin(x) cos2(x)− 3 sin3(x)− 4τ sin(2x)]dτdτ

= 3t2 sin(x) cos2(x)− 3
t2

2
sin3(x)− 2

t3

3
sin(2x)

u2 = L−1
tt Lxxu1(x, t)

= L−1
tt [−6t2 sin2(x) cos(x) + 3t2 cos3(x)− 9

2
t2 sin2(x) cos(x)− 4

3
t3 cos(2x)]dτdτ

= −t
4

2
sin2(x) cos(x) +

t4

4
cos3(x)− 3

8
t4 sin2(x) cos(x)− 1

15
t5 cos(2x).

Thus,

u(x, t) = u0 + u1 + u2 + · · ·

= sin3(x) + t sin(2x) + 3t2 sin(x) cos2(x)− 3
t2

2
sin3(x)− 2

t3

3
sin(2x)− t4

2
sin2(x) cos(x)

+
t4

4
cos3(x)− 3

8
t4 sin2(x) cos(x)− 1

15
t5 cos(2x) + · · ·

Example 3.2.4. (Nonlinear wave equation[15]) Consider the nonhomogeneous non-

linear partial differential equation

∂2u

∂x2
− u∂

2u

∂t2
= φ(x, t) (3.2.17)
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with initial condition

u(0, t) = f(t), ux(0, t) = g(t)

Rewrite (3.2.17) in the operator form:

Lxxu−N(u) = φ(x, t)

Lxxu = N(u) + φ(x, t) (3.2.18)

where Lxx = ∂2

∂x2
, then its inverse is L−1

xx =
∫ x

0

∫ x
0

(.)dsds and N(u) = uutt.

Applying L−1
xx to (3.2.18) yields

L−1
xxLxxu = L−1

xxN(u) + L−1
xxφ(x, t)

=

∫ x

0

∫ x

0

(
∂2u

∂s2
)dsds

=

∫ x

0

(
∂u

∂s
− c1)ds

thus,

u(x, t)− c1x− c2 = L−1
xxN(u) + L−1

xxφ(x, t) (3.2.19)

using the initial conditions

c2 = f(t) and c1 = g(t)

substituting in (3.2.19)

u(x, t) = g(t)x+ f(t) + L−1
xxN(u) + L−1

xxφ(x, t)

using that u(x, t) =
∑∞

n=0 un(x, t) and Nu =
∑∞

n=0An

∞∑
n=0

un(x, t) = g(t)x+ f(t) + L−1
xx

∞∑
n=0

An + L−1
xxφ(x, t)

then it follows that

u0(x, t) = g(t)x+ f(t) + L−1
xxφ(x, t)

un+1(x, t) = L−1
xxAn, n = 0, 1, 2, · · ·
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Numerical Example: Consider the following nonhomogeneous nonlinear

wave problem

∂2u

∂x2
− u∂

2u

∂t2
= 2− 2(t2 + x2)

with initial condition

u(x, 0) = x2

u(0, t) = t2, ux(0, t) = 0

In this problem Nu = u∂
2u
∂t2

, φ(x, t) = 2− 2(t2 + x2), f(t) = t2 and g(t) = 0. Using

the same procedure and the recursive terms algorithm obtained in the previous

description we get

u0(x, t) = g(t)x+ f(t) + L−1
xxφ(x, t) = t2 + L−1

xx (2− 2(x2 + t2)

= t2 +

∫ x

0

∫ x

0

(2− 2(s2 + t2)dsds = t2 + x2 − x4

6
− x2t2

and

u1 = L−1
xxA0 = L−1

xxN(u0) = L−1
xxu0

∂2u0

∂t2

=

∫ x

0

∫ x

0

(t2 + s2 − s4

6
− s2t2)

∂2(t2 + s2 − s4

6
− s2t2)

∂t2
dsds

=

∫ x

0

∫ x

0

(t2 + s2 − s4

6
− s2t2)(2− 2s2)dsds

= x2t2 +
1

6
x4 − 1

3
x4t2 − 7

90
x6 +

2

15
x6t2 +

x8

16
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The second term is

u2 = L−1
xxA1

A1 =
d

dλ
[N(u0 + u1λ)] |λ=0

=
d

dλ
[(u0 + u1λ)

∂2(u0 + u1λ)

∂t2
] |λ=0

= u1
∂2(u0

∂t2
+ u0

∂2(u1)

∂t2

= 2x2t2 +
1

3
x4 − 2

3
x4t2 − 7

45
x6 +

2

15
x6t2 +

1

84
x8

− 2x4t2 − 1

3
x6 +

2

3
x6t2 +

7

45
x8 − 2

15
x8t2 − 1

10
x10

+
4

3
x4 +

2

15
x8 +

4

3
x2t2 +

2

15
x6t2 − 4

3
x4t2

− 2

15
x8t2 − 2

9
x6 − 1

45
x10

so

u2 = L−1
xxA1 = 1

3
x4t2 + 7

90
x6 − 2

15
x6t2 − x8

16
+ · · ·

It can be easily observed that the self canceling ”noise” terms appear between the

recursive components. So the solution is

u(x, t) = lim
n→∞

un(x, t) = x2 + t2

3.2.3 Third Order nonlinear Partial Differential Equations

In this section I apply the ADM to solve the generalized log-KdV equation as

an example of higher order partial differential equations after reduced it to log-KdV

equation from [38, 13].

generalized log-KdV equation

The Korteweg de Vries equation (KdV) is a mathematical model of waves on shallow

water surfaces. It is an example of non-linear partial differential equation whose
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solutions can be exactly and precisely specified. The mathematical theory behind the

KdV equation is a topic of active research. The KdV equation was first introduced

by Boussinesq in 1877 and rediscovered by Diederik Korteweg and Gustav de Vries

in 1895.

The log-KdV equation models solitary waves in anharmonic chains with Hertzian

interaction forces and it is defined by

vt + (v ln | v |)x + vxxx = 0. (3.2.20)

In this section we will try to solve the generalized log-KdV equation by using the

ADM. The generalized log-KdV equation is given by

vt + (v ln | v |n)x + vxxx = 0, n = 1, 2, · · · . (3.2.21)

Solution

Using the rescaling of space x and time t variables as

x→
√
nx,

t→
√
n3t,

carries out the equation(3.2.21) to equation(3.2.20).

In order to solve (3.2.20), firstly we will use the transform

u(x, t) = ln v(x, t),

this is the same as

v(x, t) = eu(x,t), (3.2.22)

and then substituting it in (3.2.20) to get

ute
u + (euu)x + (eu)xxx = 0,
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after differentiating the second and the third terms we get

[ut + uxxx + uux + ux + 3uxuxx + (ux)
3]eu = 0, (3.2.23)

since eu cant equal zero, so (3.2.23) holds if

ut + uxxx + uux + ux + 3uxuxx + (ux)
3 = 0. (3.2.24)

subject to the initial condition

u(x, 0) =
c

k
+

1

2
− x2

4

where c and k are nonzero constants.

Rewrite (3.2.24) in the Adomian operator form

Ltu+ Lxxxu+ Lxu+N(u) = 0

Ltu = −Lxxxu− Lxu−N(u) (3.2.25)

where Lt = ∂
∂t

, Lxxx = ∂3

∂x3
, Lx = ∂

∂x
and

N(u) = uux + 3uxuxx + (ux)
3. Applying L−1

t =
∫ t

0
(.)dτ to both sides of (3.2.25) to

obtain

L−1Ltu =

∫ t

0

utdτ = u(x, y, t)− u(x, y, 0)

= L−1
t [−Lxxxu− Lxu−N(u)]

Using the decomposition series for u and the Adomian polynomial representation

for the nonlinear term N(u), gives

∞∑
n=0

un(x, t) = u(x, 0) + L−1
t [−Lxxx

∞∑
n=0

un(x, t)− Lx
∞∑
n=0

un(x, t)−
∞∑
n=0

An]

where An’s are Adomian polynomials. Then the ADM iterative scheme is

u0 = u(x, 0) =
c

k
+

1

2
− x2

4
,

un+1 = L−1
t [−Lxxxun(x, t)− Lxun(x, t)− An].
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By considering N(u) = uux + 3uxuxx + (ux)
3, the first three iterations are

u1 = L−1
t [−Lxxxu0(x, t)− Lxu0(x, t)− A0] =

∫ t

0

(0 +
x

2
− A0)dτ

A0 = N(u0) = u0(u0)x + 3(u0)x(u0)xx + ((u0)x)
3

= (
c

k
+

1

2
− x2

4
)(−x

2
) + 3(−x

2
)
−1

2
+ (−x

2
)3

= − cx
2k
− x

4
+
x3

8
+

3x

4
− x3

8
= − cx

2k
+
x

2

then,u1 =
∫ t

0
(x

2
− cx

2k
− x

2
)dτ = cxt

2k

u2 = L−1
t [−Lxxxu1(x, t)− Lxu1(x, t)− A1] =

∫ t

0

(0 +
ct

2k
− A0)dτ

A1 = u1N
′(u0) = u1

∂

∂x
(u0(u0)x + 3(u0)x(u0)xx + ((u0)x)

3)

= u1[u0(u0)xx + ((u0)x)
2 + 3(u0)x(u0)xxx + 3((u0)xx)

2 + 3((u0)x)
2(u0)xx]

=
cxt

2k
[(
c

k
+

1

2
− x2

4
)
−1

2
+
x2

4
+ 0 + 3(

x2

4
)(
−1

2
)]

= − c2xt

(2k)2
− cxt

8k

then, u2 =
∫ t

0
( cτ

2k
+ c2xτ

(2k)2
+ cxτ

8k
)dτ

= ct2

4k
+ c2xt2

2(2k)2
+ cxt2

16k
.

u3 = L−1
t [−Lxxxu2(x, t)− Lxu2(x, t)− A2]

=

∫ t

0

(0 +
c2t+ ckt2

16k2
− A0)dτ

A2 = u2N
′(u0) +

1

2!
u1N

′′(u0)

= (
ct2

4k
+

c2xt2

2(2k)2
+
cxt2

16k
)(
−c
k

+
1

2
) +

1

2!
(
cxt

2k
)(0)

=
−c2t2

4k2
+
−c3xt2

8k3
+
−c2xt2

16k2
+
ct2

8k
+
c2xt2

16k2
+
cxt2

32k

then, u3 =
∫ t

0
(−c

2τ2

4k2
+ −c3xτ2

8k3
+ −c2xτ2

16k2
+ cτ2

8k
+ c2xτ2

16k2
+ cxτ2

32k
)dτ

= −c2t3
12k2

+ −c3xt3
24k3

+ −c2xt3
48k2

+ ct3

24k
+ c2xt3

48k2
+ cxt3

96k
.
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The solution in the series form is thus given by

u(x, t) = u0 + u1 + u2 + u3 + · · ·

=
c

k
+

1

2
− x2

4
+
cxt

2k
+
ct2

4k
+

c2xt2

2(2k)2

+
cxt2

16k
+
−c2t3

12k2
+
−c3xt3

24k3
+
−c2xt3

48k2

+
ct3

24k
+
c2xt3

48k2
+
cxt3

96k
+ · · · .

To find the solution v(x, t) we use (3.2.22).

3.2.4 System of Partial Differential Equations

In this section we apply the ADM to solve system of partial differential

equations[7]. Consider the following system of partial differential equations

ut = uux + vuy

vt = vvx + uvy (3.2.26)

with the initial conditions

u(x, y, 0) = v(x, y, 0) = x+ y

The exact solution is

u(x, y, t) = v(x, y, t) =
x+ y

(1− 2t)

write the system in (3.2.26) in Adomian operator form

Ltu = N(u) +K(u)

Ltv = K(v) +N(v) (3.2.27)
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where Lt = ∂
∂t

, N(u) = uux, K(u) = vuy, N(v) = vvy and K(v) = uvx. Apply

L−1(t) =
∫ t

0
(.)dτ to both sides of (3.2.27) to obtain

L−1Ltu =

∫ t

0

utdτ = u(x, y, t)− u(x, y, 0) = L−1(t)(N(u) +K(u))

L−1Ltv =

∫ t

0

vtdτ = v − v(x, y, 0) = L−1(t)(K(v) +N(v)) (3.2.28)

By Adomian decomposition method the solution of the above system assume to be

at the series form

u(x, y, t) =
∞∑
n=0

un(x, y, t)

v(x, y, t) =
∞∑
n=0

vn(x, y, t) (3.2.29)

and the nonlinear terms are

N(u) = uux = Σ∞n=0An

N(v) = vvx = Σ∞n=0Bn

K(u) = vuy = Σ∞n=0Cn

K(v) = uvy = Σ∞n=0Dn (3.2.30)

the values of An’s, Bn’s, Cn’s and Dn’s are determined using the general formula of

Adomian polynomials(2.1.10).

Substitute (3.2.29) and (3.2.30) in (3.2.28) we get

Σ∞n=0un(x, y, t)− u(x, y, 0) = L−1(Σ∞n=0An + Σ∞n=0Cn)

Σ∞n=0vn(x, y, t)− v(x, y, 0) = L−1(Σ∞n=0Bn + Σ∞n=0Dn)

the solution is obtained by the following scheme

u0 = x+ y, un+1 = L−1(An + Cn)

v0 = x+ y, vn+1 = L−1(Bn +Dn)
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The first four terms are

A0 = N(u0) = u0(u0)x = x+ y

C0 = K(u0) = v0(u0)y = x+ y

so,u1 = 2(x+ y)t

B0 = N(v0) = v0(v0)x = x+ y

D0 = K(v0) = u0(v0)y = x+ y

so,v1 = 2(x+ y)t

A1 = u1(u0)x + u0(u1)x = 4(x+ y)t

C1 = v0(u1)y + v1(u0)y = 4(x+ y)t

so,u2 = (x+ y)(2t)2

B1 = v1(v0)x + v0(v1)x = 4(x+ y)t

D1 = u0(v1)y + u1(v0)y = 4(x+ y)t

so,v2 = (x+ y)(2t)2

A2 = u0(u2)x + u1(u1)x + u2(u0)x = 12(x+ y)t2

C2 = v0(u2)y + v1(u1)y + v2(u0)y = 12(x+ y)t2

so,u3 = (x+ y)(2t)3

B2 = v0(v2)x + v1(v1)x + v2(v0)x = 12(x+ y)t2

D2 = u0(v2)y + u1(v1)y + u2(v0)y = 12(x+ y)t2

so,v3 = (x+ y)(2t)3

A3 = u0(u3)x + u1(u2)x + u2(u1)x + u3(u0)x = 4(x+ y)(2t)2

C3 = v0(u3)y + v1(u2)y + v2(u1)y + v3(u0)y = 4(x+ y)(2t)2
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so,u4 = (x+ y)(2t)4

B3 = v0(v3)x + v1(v2)x + v2(v1)x + v3(v0)x = 4(x+ y)(2t)2

D3 = u0(v3)y + u1(v2)y + u2(v1)y + u3(v0)y = 4(x+ y)(2t)2

so,v4 = (x+ y)(2t)4

...

un = (x+ y)(2t)n

vn = (x+ y)(2t)n

...

Thus the solution is

u(x, y, t) = v(x, y, t) = Σ∞n=0(x+ y)(2t)n =
x+ y

(1− 2t)

which is the exact solution of the system in (3.2.26).

3.3 Integral Equations

Stating from the 1980s, the ADM has been applied to a wide class of integral

equations[2, 17] To illustrate the procedure, consider the following Volterra integral

equations of the second kind given by

u(x) = f(x) + λ

∫ x

a

K(s, t)[L(u(s)) +N(u(s))]ds, λ 6= 0 (3.3.1)

Where f(x) is a given function, λ is a parameter, K(x, t) is the kernel, L(u(x)) and

N(u(x)) are linear and nonlinear operators respectively. Assume that the solution

u(x) =
∞∑
n=0

un(x)
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and

N(u(x)) =
∞∑
n=0

An

substituting these assumptions in (3.3.1)

∞∑
n=0

un(x) = f(x) + λ

∫ x

a

K(s, t)[L(
∞∑
n=0

un(s)) +
∞∑
n=0

An]ds

this gives the following scheme

u0 = f(x)

un+1 = λ

∫ x

a

K(s, t)[L(un(s)) + An]ds, n = 0, 1, 2, · · ·

Example 3.3.1. [2] Consider the nonlinear Volterra integral equation

u(x) = x+

∫ x

0

u2(s)ds.

Matching this equation with the general integral equation form we have

f(x) = x, N(u(x)) = u2(x).

According to the techniques described above, we have the following recursive rela-

tionship

u0 = x,

un+1 =

∫ x

0

An(s)ds, n = 0, 1, 2, 3, · · · .

We obtain the first three iterations as

u1 =

∫ x

0

A0(s)ds

A0 = N(u0(x)) = u2
0(x) = x2

so,u1 =
∫ x

0
s2ds = x3

3

u2 =

∫ x

0

A1(s)ds

A1 = u1N
′(u0(x)) =

x3

3
(2x) =

2x4

3
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so,u2 =
∫ x

0
2s4

3
ds = 2x5

15

u3 =

∫ x

0

A2(s)ds

A2 = u2N
′(u0(x) +

1

2!
u1N

′′(u0(x))

=
2x5

15
(2x) +

1

2!

x3

3
(2)

51x6

135

so,u3 =
∫ x

0
51x6

135
ds = 17x5

315
Thus,

u(x) = u0 + u1 + u2 + u3 + · · · = x+ x3

3
+ 2x5

15
+ 17x5

315
+ · · · = tan(x)



CHAPTER 4

Inverse Parabolic Problems

In this chapter ADM is applied for solving some inverse problems in some

inverse parabolic problems. In partial differential equations problems, solving an

equation with initial conditions and boundary conditions that are all specified com-

pletely, these problems are called direct problems and these problems are well posed.

In other words in these problems we have one output for each input given. However,

when initial or/and boundary conditions or some input coefficient or source function

are not given or not completely specified so that the problem has more than one

unknown, this problem is called inverse problem, that is given certain output to

get unknown input. We call inverse problem of coefficient identification if the prob-

lem coefficient is unknown and we call an inverse problem of source identification

if the source function is unknown, and so on. Also inverse problems are classified

according to the type of the partial equations we have. That means if the partial

differential equation is parabolic, then we have parabolic inverse problem, and so

on. In this chapter we focus our study on Parabolic Inverse Problems[?, 31, 35, 18].
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4.1 Inverse Problem of Boundary Conditions Iden-

tification

D.Lesnic and L.Elliott [31] apply the ADM to find the temperature and the

heat flux at the boundary x = 0 from the boundary conditions at x = 1.

Consider a one-dimensional inverse problem heat conduction

ut = uxx 0 < x < 1, t > 0 (4.1.1)

with the temperature and the heat flux f0(t) and g0(t) respectively on the boundary

x = 0 are unknown, and the temperature and the heat flux f1(t) and g1(t) at the

boundary x = 1 are measured and so they are known

u(1, t) = f1(t),
∂u(1, t)

∂x
= g1(t), t > 0

in this case we have overspecification at one boundary which is x = 1.

In order to solve this problem the decomposition method is used. Take the inverse

operator L−1
xx as follow

L−1
xx =

∫ x

1

∫ x

1

(.)dsds

Applying L−1
xx to both sides of the Adomian operator form of (4.1.1) to get

L−1
xxLxxu = L−1

xxLtu∫ x

1

∫ x

1

(uxx)dsds = L−1
xxLtu∫ x

1

(ux(s, t)− ux(1, t))ds = L−1
xxLtu

u(x, t)− c1(x− 1)− c2 = L−1
xxLtu (4.1.2)

from the boundary conditions at x = 1 we get that

u(1, t) = c2 = f1(t)
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and
∂u(1, t)

∂x
= g1(t) = c1,

so (4.1.2) becomes

u(x, t) = g1(t)(x− 1) + f1(t) + L−1
xxLtu.

Using u(x, t) =
∑∞

n=0 un(x, t) we have

∞∑
n=0

un(x, t) = g1(t)(x− 1) + f1(t) + L−1
xxLt

∞∑
n=0

un(x, t). (4.1.3)

From (4.1.3) we can define

u0 = g1(t)(x− 1) + f1(t).un+1 = L−1
xxLtun(x, t), n = 0, 1, 2, . . . . (4.1.4)

Based on equation(4.1.4), we can calculate

u1 = L−1
xxLtu0(x, t) = L−1

xxLt(g1(t)(x− 1) + f1(t))

=

∫ x

1

∫ x

1

(g′1(t)s+ f ′1(t))dsds

=
(x− 1)3

3!
g′1(t) +

(x− 1)2

2!
f ′1(t)

u2 = L−1
xxLtu1(x, t) = L−1

xxLt(
(x− 1)3

3!
g′1(t) +

(x− 1)2

2!
f ′1(t))

=

∫ x

1

∫ x

1

(g′′1(t)
s3

3!
+ f ′′1 (t)

s2

2!
)dsds

=
(x− 1)5

5!
g′′1(t) +

(x− 1)4

4!
f ′′1 (t)

u3 = L−1
xxLtu2(x, t) = L−1

xxLt(
(x− 1)5

5!
g′′1(t) +

(x− 1)4

4!
f ′′1 (t))

=

∫ x

1

∫ x

1

g′′′1 (t)
s5

5!
+ f ′′′1 (t)

s4

4!
)dsds

=
(x− 1)7

7!
g′′′1 (t) +

(x− 1)6

6!
f ′′′1 (t)

...

un =
(x− 1)n+1

(n+ 1)!
g

(n)
1 (t) +

(x− 1)n

n!
f

(n)
1 (t)
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Thus,

u = u0 + u1 + u2 + u3 + · · ·+ un + · · ·

= g1(t)(x− 1) + f1(t) +
(x− 1)3

3!
g′1(t) +

(x− 1)2

2!
f ′1(t)

+
(x− 1)5

5!
g′′1(t) +

(x− 1)4

4!
f ′′1 (t)

+
(x− 1)7

7!
g′′′1 (t) +

(x− 1)6

6!
f ′′′1 (t) + · · ·

+
(x− 1)n+1

(n+ 1)!
g

(n)
1 (t) +

(x− 1)n

n!
f

(n)
1 (t)

= [g1(t)(x− 1) +
(x− 1)3

3!
g′1(t) +

(x− 1)5

5!
g′′1(t)

+
(x− 1)7

7!
g′′′1 (t) + · · ·+ (x− 1)n+1

(n+ 1)!
g

(n)
1 (t) + · · · ]

+ [f1(t) +
(x− 1)2

2!
f ′1(t) +

(x− 1)4

4!
f ′′1 (t)

+
(x− 1)6

6!
f ′′′1 (t) + · · ·+ (x− 1)n

n!
f

(n)
1 (t) + · · · ].

The general formula is

u(x, t) =
∞∑
n=0

(x− 1)2n+1

(2n+ 1)!
g

(n)
1 (t) +

∞∑
n=0

(x− 1)2n

(2n)!
f

(n)
1 (t) (4.1.5)

To check that this result is the solution of (4.1.1) and satisfies the boundary con-

ditions we differentiate it twice with respect to x and once with respect to t we
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get

ux(x, t) =
∞∑
n=1

(2n+ 1)
(x− 1)2n

(2n+ 1)!
g

(n)
1 (t) +

∞∑
n=1

(2n)
(x− 1)2n−1

(2n)!
f

(n)
1 (t)

=
∞∑
n=1

(x− 1)2n

(2n)!
g

(n)
1 (t) +

∞∑
n=1

(x− 1)2n−1

(2n− 1)!
f

(n)
1 (t)

uxx(x, t) =
∞∑
n=2

(2n)
(x− 1)2n−1

(2n)!
g

(n)
1 (t) +

∞∑
n=2

(2n− 1)
(x− 1)2n−2

(2n− 1)!
f

(n)
1 (t)

=
∞∑
n=2

(x− 1)2n−1

(2n− 1)!
g

(n)
1 (t) +

∞∑
n=2

(x− 1)2n−2

(2n− 2)!
f

(n)
1 (t)

ut(x, t) =
∞∑
n=1

(x− 1)2n+1

(2n+ 1)!
g

(n+1)
1 (t) +

∞∑
n=1

(x− 1)2n

(2n)!
f

(n+1)
1 (t)

let m = n+ 1 then n = m− 1 if n = 1→ m = 2 so

ut(x, t) =
∞∑
n=2

(x− 1)2(n−1)+1

(2(n− 1) + 1)!
g

(n)
1 (t) +

∞∑
n=1

(x− 1)2(n−1)

(2(n− 1))!
f

(n)
1 (t)

=
∞∑
n=2

(x− 1)2n−1

(2n− 1)!
g

(n)
1 (t) +

∞∑
n=2

(x− 1)2n−2

(2n− 2)!
f

(n)
1 (t) = uxx

the boundary conditions are satisfied, for n = 0 and x = 1

u(x, t) = f1(t) + (x− 1)g1(t)

so u(1, t) = f1(t) and ∂u(1,t)
∂x

= g1(t)

Therefor, the result at (4.1.5) is the solution of the inverse problem in heat conduc-

tion (4.1.1).

Two dimension inverse problem

Let us now describe the solution of the inverse problem in two dimensions x and y.

Consider the generalized 2-D heat conduction equation:

uxx + uyy = ut, 0 < x < 1, 0 < y < 1, t > 0

subject to the following boundary conditions

u(1, y, t) = f1(y, t)
∂u(1, y, t)

∂x
= g1(y, t)
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u(x, 1, t) = f2(x, t)
∂u(x, 1, t)

∂x
= g2(x, t)

In this case, we have two solutions, one in x−dim and one in y−dim and Adomian

shows that the exact solution is the summation of these two solutions divided by 2.

In x− dim we take L−1
xx =

∫ x
1

∫ x
1

(.)dsds to both sides of equation above

L−1
xxLxxu = L−1

xx [Ltu− Lyyu]∫ x

1

∫ x

1

(uxx)dsds = L−1
xx [Ltu− Lyyu]∫ x

1

(ux(s)− ux(1))dsds = L−1
xx [Ltu− Lyyu]

u(x, y, t)− c1(x− 1)− c2 = L−1
xx [Ltu− Lyyu]

u(x, y, t)− φx = L−1
xx [Ltu− Lyyu],

where φx = c1(x− 1) + c2 and from the boundary conditions at x = 1 we find that

c1 = g1(y, t) and c2 = f1(y, t), then φx = g1(y, t)(x− 1) + f1(y, t), so

u(x, y, t) = φx + L−1
xx [Ltu− Lyyu].

Decompose the solution u in infinite series with u0 = φx to obtain the following

recursive relationship of the solution:

un+1(x, y, t) = [L−1
xxLt − L−1

xxLyy]un.

The same calculations are made for the y − dim. Define L−1
yy =

∫ y
1

∫ y
1

(.)dsds

L−1
yy Lyyu = L−1

yy [Ltu− Lxxu]∫ y

1

∫ y

1

(uyy)dsds = L−1
yy [Ltu− Lxxu]∫ y

1

(uy(s)− uy(1))dsds = L−1
yy [Ltu− Lxxu]

u(x, y, t)− c3(y − 1)− c4 = L−1
yy [Ltu− Lxxu]

u(x, y, t)− φy = L−1
yy [Ltu− Lxxu],
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where φy = c3(y−1)+c4, from the boundary conditions at y = 1 we get c3 = g2(x, t)

and c4 = f2(x, t), then

u(x, y, t) = g2(x, t)(y − 1) + f2(x, t) + L−1
yy [Ltu− Lxxu].

Using u0 = φy, we get

un+1(x, y, t) = [L−1
yy Lt − L−1

yy Lxx]un.

The recursive relationship of the exact solution is

u0 =
1

2
[φx + φy]

un+1(x, y, t) =
1

2
[L−1

yy Lt + L−1
xxLt − L−1

yy Lxx − L−1
xxLyy]un

Example 4.1.1. Consider a two-dimensional inverse problem

uxx + uyy = ut, 0 < x < 1, 0 < y < 1, t > 0

subject to the following boundary conditions

u(1, y, t) = y2 + 4t+ 1
∂u(1, y, t)

∂x
= 2

u(x, 1, t) = x2 + 4t+ 1
∂u(x, 1, t)

∂x
= 2

Using the above solution, the first four iterations are:

u0 =
1

2
[φx + φy] =

1

2
[g1(y, t)(x− 1) + f1(y, t) + g2(x, t)

(y − 1) + f2(x, t)]

=
1

2
[y2 + 4t+ 1 + 2(x− 1) + x2 + 4t+ 1 + 2(y − 1)]

= x+ y + 4t+
x2 + y2

2
− 1
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u1 =
1

2
[L−1

yy Lt + L−1
xxLt − L−1

yy Lxx − L−1
xxLyy]u0

=
1

2
[L−1

yy (4) + L−1
xx (4)− L−1

yy (1)− L−1
xx (1)]

=
1

2
(
3(x− 1)2

2
+

3(y − 1)2

2
) =

3(x− 1)2

4
+

3(y − 1)2

4

=
3(x2 + y2)

4
− 3(y + x)

2
+

3

2

u2 =
1

2
[L−1

yy Lt + L−1
xxLt − L−1

yy Lxx − L−1
xxLyy]u1

=
1

2
[L−1

yy (0) + L−1
xx (0)− L−1

yy (
3

2
)− L−1

xx (
3

2
)]

=
1

2
(−(

3

2
)
(x− 1)2

2
− (

3

2
)
(y − 1)2

2
)

=
−3(x2 + y2)

8
+

3(y + x)

4
− 3

4

u3 =
1

2
[L−1

yy Lt + L−1
xxLt − L−1

yy Lxx − L−1
xxLyy]u2

=
1

2
[L−1

yy (0) + L−1
xx (0)− L−1

yy (
−3

4
)− L−1

xx (
−3

4
)]

=
1

2
((

3

4
)
(x− 1)2

2
+ (

3

4
)
(y − 1)2

2
)

=
3(x2 + y2)

16
− 3(y + x)

8
+

3

8
...

un =
3(−1)n+1

2n+1
(x2 + y2) +

3(−1)n

2n
(y + x) +

3(−1)n

2n
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Thus,

u = u0 + u1 + u2 + u3 + · · ·+ un + · · ·

= u0 +
∞∑
n=1

3(−1)n+1

2n+1
(x2 + y2) +

∞∑
n=1

3(−1)n

2n
(y + x) +

∞∑
n=1

3(−1)n

2n

= 4t+ x+ y +
x2 + y2

2
− 1 +

∞∑
n=1

3(−1)n+1

2n+1
(x2 + y2)

+
∞∑
n=1

3(−1)n

2n
(y + x) +

∞∑
n=1

3(−1)n

2n

= 4t+ (x2 + y2)[
1

2
+

3

4

∞∑
n=0

(−1)n

2n
] + (x+ y − 1)[1− 3

2

∞∑
n=0

(−1)n

2n
].

since the above are geometric series so the summation is

u(x, y, t) = 4t+ (x2 + y1)[
1

2
+

3

4

1

1 + (1/2)
] + (y + x− 1)[1− 3

2

1

1 + (1/2)
]

= 4t+ x2 + y2

The Inverse Heat Conduction Problem With Mixed Boundary Con-

ditions

Consider the following inverse problem

ut = uxx, 0 < x < 1, t > 0 (4.1.6)

Subject to initial condition

u(x, 0) = p(x)

and with boundary conditions

u(0, t) = f0(t) unknown condition

−∂u(0,t)
∂x

= g0(t) unknown condition

u(x0, t) = h(t) known condition

∂u(1,t)
∂x

= g1(t) known condition

Where x0 ∈ (0, 1) if x0 = 0 then we have a direct problem, if x0 = 1 we return to the
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case discussed in the beginning. We solve this problem in two different approaches.

The first approach[31]:

Rewrite (4.1.6) using Adomian operator form

Ltu = Lxxu

Apply the inverse operator L−1
t =

∫ t
0
(.)ds to the equation above L−1

t Ltu = L−1
t Lxxu

which implies u(x, t)− u(x, 0) = L−1
t Lxxu

using initial condition u(x, 0) = p(x) we have the equation

u(x, t) = p(x) + L−1
t Lxxu

Now, define the inverse operator with respect to x as

L−1
xx =

∫ x

x0

∫ x

1

(.)dsds.

So

L−1
xxLxxu = L−1

xxLtu

then, u(x, t)− u(x0, t)− ux(1, t)(x− x0) = L−1
xxLtu from the boundary conditions at

x = 1 and x = x0 we get u(x0, t) = h(t) and ux(1, t) = g1(t), then

u(x, t) = g1(x, t)(x− x0) + h(t) + L−1
xxLtu

Then use the following recursive relation

u0 =
1

2
[p(x) + g1(x, t)(x− x0) + h(t)]

un+1(x, t) =
1

2
[L−1

xxLt + L−1
t Lxx]un

Example 4.1.2. Consider the inverse heat conduction described in (4.1.6) with

h(t) = 2t + x2
0, p(x) = x2 and g1(x, t) = 2. Then applying the recursive relation
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(4.1.4) we have

u0 =
1

2
[x2 + 2(x− x0) + 2t+ x2

0]

u1 =
1

2
[L−1

xxLt + L−1
t Lxx]u0 =

1

4
[L−1

xx (2) + L−1
t (2)]

=
1

4
[x2 − x2

0 − 2(x− x0) + 2t]

u2 =
1

2
[L−1

xxLt + L−1
t Lxx]u1 =

1

8
[L−1

xx (2) + L−1
t (2)]

=
1

8
[x2 − x2

0 − 2(x− x0) + 2t]

...

un(x, t) =
1

2n+1
[x2 − x2

0 − 2(x− x0) + 2t], n = 1, 2, 3, . . . .

Hence using the decomposition series of u we find

u = u0 + u1 + u2 + · · ·+ un + · · ·

= u0 +
∞∑
n=1

1

2n+1
[x2 − x2

0 − 2(x− x0) + 2t]

=
1

2
[x2 + 2(x− x0) + 2t+ x2

0] +
∞∑
n=1

1

2n+1
[x2 − x2

0 − 2(x− x0) + 2t]

= (x2 + 2t)
∞∑
n=0

1

2n+1
+ (x− x0 +

x0

2
) + (x0 − x−

x2
0

2
)
∞∑
n=1

1

2n

= x2 + 2t.

The Second approach[35]:

In this way we separate our original problem into two problems one is direct in the

interval (x0, 1) and the other is inverse problem in the interval (0, x0), with t > 0.

Consider the partial differential equation:

ut = uxx, x0 < x < 1, t > 0 (4.1.7)

subject to the initial condition

u(x, 0) = p(x)
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and boundary conditions

u(x0, t) = h(t),
∂u(1, t)

∂x
= g1(t).

This is the direct heat equation, take L−1
t =

∫ t
0
(.)dτ and apply it to (4.1.7) we

get that u(x, t) = p(x) + L−1
t Lxxu and by substituting u =

∑∞
n=0 un to arrive the

recursive relation:

u0(x, t) = p(x)

un+1(x, t) =

∫ t

0

(Lxxun)dτ. (4.1.8)

Now consider the following inverse problem

ut = uxx, x0 < x < 1, t > 0

subject to the initial condition

u(x, 0) = p(x)

and boundary conditions

u(x0, t) = h(t),
∂u(0, t)

∂x
= g0(t).

Since g0(t) and also u(0, t) = f0(t) are unknown. If we integrate (4.1.7) once with

respect to x we find that∫ x0
0
uxxds =

∫ x0
0
utdx

ux(x0, t)− ux(0, t) =
∫ x0

0
utdx

thus, ux(0, t) is given by

ux(0, t) = ux(x0, t)−
∫ x0

0

utdx. (4.1.9)

If we integrate the (4.1.7) twice with respect to x we have∫ x0
0

∫ x
0
uxxds =

∫ x0
0

∫ x
0
utdx
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u(x0, t)− u(0, t)− ux(0, t)x0 =
∫ x0

0

∫ x
0
utdx

therefor, u(0, t) is obtained from

u(0, t) = u(x0, t)− ux(0, t)x0 −
∫ x0

0

utdx. (4.1.10)

After computing the approximate value of u(x, t) from the relation (4.1.8) that

obtained from the direct part will use for solving ux(0, t)andu(0, t) which they are

given by (4.1.9) and (4.1.10), respectively, and then solve the inverse problem.

Example 4.1.3. [31] For the same example in the first approach we get for the

direct problem part

u0(x, t) = x2

u1(x, t) =

∫ t

0

(Lxxu0)dτ =

∫ t

0

2dt = 2t

u2(x, t) =

∫ t

0

(Lxxu1)dτ = 0⇒ un = 0 ∀n = 0, 1, 2, . . .

thus u = u0 + u1 = x2 + 2t.

From (4.1.9) we get that

ux(0, t) = ux(x0, t)−
∫ x0

0
utdx = 2x0 −

∫ x0
0

2dx = 0

and from (4.1.10)

u(0, t) = u(x0, t)− ux(0, t)x0 −
∫ x0

0
utdx = 2t+ x2

0 − 0−
∫ x0

0
2dx

= 2t+ x2
0 − x2

0 = 2t.

We see that results are the same by both approaches.

Inverse Heat Conduction With Dirichlet Conditions

Consider the following Dirichlet inverse problem[31]

ut = uxx, 0 < x < 1, t > 0 (4.1.11)

Subject to initial condition

u(x, 0) = p(x)
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and with boundary conditions

u(x0, t) = h(t), u(1, t) = f1(t).

Where x0 ∈ (0, 1) if x0 = 1 then the problem has a nonunique solution, while if

x0 = 0 have a direct Dirichlet problem for the heat equation.

For solving the Dirichlet problem above using the Adomian decomposition method

we first define the inverse operator with respect to x as follow

L−1
xx =

∫ x

x0

∫ x

x0

(.)dsds− x− x0

1− x0

∫ 1

x0

∫ x

x0

(.)dsds

Apply this operator to Adomian operator form of (4.1.11) we get

L−1
xxLxxu = L−1

xxLtu

u(x, t)− u(x0, t)− ux(x0, t)(x− x0)− x− x0

1− x0

(u(1, t)− u(x0, t)− ux(x0, t)(1− x0)) = L−1
xxLtu

u(x, t)− [1− x− x0

1− x0

]u(x0, t)−
x− x0

1− x0

u(1, t) = L−1
xxLtu

so the equation of u in x− dim is given by

u(x, t) = [1− x− x0

1− x0

]u(x0, t) +
x− x0

1− x0

u(1, t) + L−1
xxLtu.

And we know the equation of u with respect to time inverse operator is given by

u(x, t) = p(x) + L−1
t Lxxu.

Taking averages the solution u is

u(x, t) =
1

2
[(1− x− x0

1− x0

)u(x0, t) +
x− x0

1− x0

u(1, t) + p(x)] +
1

2
[L−1

xxLtu+ L−1
t Lxxu].

Substitute the decomposition series u =
∑∞

n=0 un, then the following are the recur-

sive terms of the solution

u0 =
1

2
[(1− x− x0

1− x0

)u(x0, t) +
x− x0

1− x0

u(1, t) + p(x)]

un+1 =
1

2
[L−1

xxLtun + L−1
t Lxxun], n = 0, 1, 2, . . . .
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Example 4.1.4. For the same example in the previous section with f1(t) = 2t + 1

we have

u0 =
1

2
[(1− x− x0

1− x0

)u(x0, t) +
x− x0

1− x0

u(1, t) + p(x)]

=
1

2
[(1− x− x0

1− x0

)(2t+ x2
0) +

x− x0

1− x0

(2t+ 1) + x2]

=
1

2
[2t+ x2

0 − x2
0

x− x0

1− x0

+
x− x0

1− x0

+ x2]

=
1

2
[2t+ x2

0 + (1− x2
0)
x− x0

1− x0

+ x2]

=
1

2
[2t+ x2

0 + x2 + (1 + x0)(x− x0)]

=
1

2
[2t+ x2 + x(1 + x0)− x0]

u1 =
1

2
[L−1

xxLt + L−1
t Lxx]u0 =

1

4
[L−1

xx (2) + L−1
t (2)]

=
1

4
[x2 − x2

0 − 2xx0 + 2x2
0 − (x− x0)(1 + x0) + 2x0(x− x0) + 2t]

=
1

4
[x2 − x(1 + x0) + x0 + 2t]

u2 =
1

2
[L−1

xxLt + L−1
t Lxx]u1 =

1

8
[x2 − x(1 + x0) + x0 + 2t]

...

un(x, t) =
1

2n+1
[x2 − x(1 + x0) + x0 + 2t], n = 1, 2, 3, . . . .

Thus the final result is

u = u0 + u1 + u2 + · · ·+ un + · · ·

=
1

2
[2t+ x2 + x(1 + x0)− x0] +

∞∑
n=1

1

2n+1
[x2 − x(1 + x0) + x0 + 2t]

= (x2 + 2t)
∞∑
n=0

1

2n+1
+ (x(1 + x0)− x0)[1−

∞∑
n=0

1

2n+1
]

= x2 + 2t.

Inverse Heat Conduction With Neumann Conditions
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Consider the following Neumann inverse problem[31]

ut = uxx, 0 < x < 1, t > 0 (4.1.12)

Subject to initial condition

u(x, 0) = p(x)

and with boundary conditions

ux(x0, t) = q(t), ux(1, t) = g1(t).

Where x0 ∈ (0, 1) if x0 = 1 then the problem has a nonunique solution, while if

x0 = 0 have a direct Neumann problem for the heat equation. To solve this problem

we use the same procedure as in previous section, define L−1
xx by

L−1
xx =

∫ x

x0

∫ x

x0

(.)dsds− (x− x0)2

2(1− x0)

∫ 1

x0

(.)dsds.

Apply this operator to Adomian operator form of (4.1.12) get

L−1
xxLxxu = L−1

xxLtu

u(x, t)− u(x0, t)− ux(x0, t)(x− x0)− (x−x0)2

2(1−x0)
(ux(1, t)− ux(x0, t) = L−1

xxLtu

since u(x0, t) is not given call it C(t), then

u(x, t) = C(t) + ux(x0, t)(x− x0) +
(x− x0)2

2(1− x0)
(ux(1, t)− ux(x0, t) + L−1

xxLtu

Then the exact equation of u after considering the solution with respect to time is

u(x, t) =
1

2
[C(t) + ux(x0, t)(x− x0) +

(x− x0)2

2(1− x0)
(ux(1, t)− ux(x0, t) + p(x)]

+
1

2
[L−1

xxLtu+ L−1
t Lxxu].

Substitute u =
∑∞

n=0 un, then we obtain

u0 =
1

2
[C(t) + ux(x0, t)(x− x0) +

(x− x0)2

2(1− x0)
(ux(1, t)− ux(x0, t) + p(x)]

un+1 =
1

2
[L−1

xxLtun + L−1
t Lxxun], n = 0, 1, 2, . . . .
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Example 4.1.5. For the same example in the previous section we have

u0 =
1

2
[C(t) + ux(x0, t)(x− x0) +

(x− x0)2

2(1− x0)
(ux(1, t)− ux(x0, t) + p(x)]

=
1

2
[C(t) + 2x0(x− x0) +

(x− x0)2

2(1− x0)
(2− 2x0) + x2]

=
1

2
[C(t) + 2x2 − x2

0]

u1 =
1

2
[L−1

xxLt + L−1
t Lxx]u0

=
1

4
[L−1

xx (C ′(t)) + L−1
t (2)] = t

u2 = 0

un(x, t) = 0, ∀n = 2, 3, 4, . . .

Thus the final result is

u = u0 + u1 =
1

2
[C(t) + 2x2 − x2

0] + t (4.1.13)

since u(x, t) satisfies the original equation ut = uxx and the initial condition u(x, 0) =

p(x) = 1
2
[C(0) + 2x2 − x2

0] = x2 so we have from these relations C(t) = 2t + c

and c = x2
0 respectively, thus C(t) = 2t + x2

0 substitute it in Eq(4.1.13) we get

u(x, t) = 2t+ x2.

4.2 Inverse Problem of Coefficient Identification

In this section, the application of the ADM is discussed for solving an inverse

problem of coefficient identification [18, 35].

Consider the following inverse parabolic problem

ut = ∆u(x, t) + p(t)u(x, t) + φ(x, t), 0 < t < T, x ∈ Ω (4.2.1)

where Ω = [0, 1]d is the special domain of the problem and its boundary is ∂Ω,

x = (x1, . . . , xd), φ(x, t) is the source function and p(t) is a control parameter.
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In this problem both of function u(x, t) and p(t) are unknown, assume the above

problem is subject to the initial condition

u(x, 0) = f(x), x ∈ Ω

and with boundary conditions

u(x, t) = h(x, t), 0 < t < T, x ∈ ∂Ω.

To solve this problem we must have extra condition in a point inside Ω, so let us

define an additional condition at x0 ∈ Ω as:

u(x0, t) = E(t), T > t > 0

The Solution Technique:

First, we will use the following transform in order to get a partial differential equation

with only one unknown function.

ω(x, t) = u(x, t)r(t), (4.2.2)

where

r(t) = exp(−
∫ t

0

p(s)ds). (4.2.3)

From the (4.2.2) we find the values of ut and ∆u as follows

ut =
r(t)ωt − r′(t)ω(x, t)

r2(t)
(4.2.4)

and

∆u(x, t) =
∆ω(x, t)

r(t)
(4.2.5)

also from (4.2.3) we find that p(t) is given by

−
∫ t

0

p(s)ds = lnr(t)

p(t) = −r
′(t)

r(t)
(4.2.6)

(4.2.7)
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substitute (4.2.4), (4.2.5) and (4.2.6) in (4.2.1) to get

ωt(x, t) = ∆ω(x, t) + r(t)φ(x, t) (4.2.8)

with the initial condition

ω(x, 0) = u(x, 0) = f(x), x ∈ Ω

and boundary conditions

ω(x, t) = u(x, t)r(t) = h(x, t)r(t), 0 < t < T, x ∈ ∂Ω

and the additional condition is

ω(x0, t) = u(x, t)r(t) = E(t)r(t), 0 < t < T, x0 ∈ Ω

from above the relation of finding r(t) is given by

r(t) =
ω(x0, t)

E(t)
. (4.2.9)

From these information we conclude that the new partial differential equation is

direct problem and we can solve it using ADM.

Apply L−1
t =

∫ t
0
(.)dτ to both sides of (4.2.8) to get that:

ω(x, t) = ω(x, 0) +

∫ t

0

(∆ω(x, τ) + r(τ)φ(x, τ))dτ

since ω(x, t) =
∑∞

n=0 ωn(x, t) then

∞∑
n=0

ωn(x, t) = ω(x, 0) +

∫ t

0

(∆
∞∑
n=0

ωn(x, t) + rn(τ)φ(x, τ))dτ

since from (4.2.9) we have

rn(t) =
ωn(x0, t)

E(t)
. (4.2.10)
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Then the recursive relationship is

ω0(x, t) = ω(x, 0)

ωn+1(x, t) =

∫ t

0

(∆ωn(x, τ) + rn(τ)φ(x, τ))dτ, n = 0, 1, 2, . . . (4.2.11)

after finding ω(x, t) and r(t) from (4.2.11) and (4.2.10), respectively, we used them

to find u(x, t) and p(t).

Example 4.2.1. [35] Consider this inverse parabolic problem

ut = uxx(x, t) + p(t)u(x, t) + e−t
2

(π2 − (1 + t)2)(cos(πx) + sin(πx)), 0 < t < T, 0 < x < 1

subject to the initial condition

u(x, 0) = cos(πx) + sin(πx), 0 < x < 1

and with boundary conditions

u(0, t) = e−t
2

, u(1, t) = −e−t2 , 0 < t < T.

The extra additional condition is

u(x0, t) = e−t
2

(cos(πx) + sin(πx))

Solution:

Using the above technique we get that

ω0(x, t) = cos(πx) + sin(πx)

r0(t) =
ω0(x0, t)

E(t)
=

cos(πx) + sin(πx)

e−t2(cos(πx) + sin(πx))
= et

2

ω1(x, t) =

∫ t

0

((ω0)xx(x, t) + r0(τ)φ(x, τ))dτ

=

∫ t

0

[(−π2)(cos(πx) + sin(πx)) + eτ
2

e−τ
2

(π2 − (1 + t)2)(cos(πx) + sin(πx))]dτ

=

∫ t

0

(−(1 + τ)2)(cos(πx) + sin(πx))dτ = (
−(1 + t)3

3
+

1

3
)(cos(πx) + sin(πx))

r1(t) =
ω1(x0, t)

E(t)
= et

2

(
−(1 + t)3

3
) +

1

3
)
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after many terms we have r(t) = et
2

and ω(x, t) = cos(πx) + sin(πx), thus from

(4.2.2) and (4.2.3) we get u(x, t) = et
2
(cos(πx) + sin(πx)) and p(t) = 1 + t2.

4.3 The Inverse Conductivity problem

In [25, 10, 30, 26] researchers worked to give numerical solution of the inverse

conductivity problem. Let Ω ∈ R2 be an open and bounded subset with smooth

boundary ∂Ω. Assuming that there are no sources or sinks of current in Ω, the

application of a voltage potential f on ∂Ω induces a voltage potential u inside Ω

defined as the unique solution of the boundary value problem

∇.(γ∇u) = 0 in Ω, u = f on ∂Ω

where γ : Ω→ (0,∞) is measurable and bounded away from zero to infinity. Often

we can assume that γ is constant near ∂Ω always we take γ = 1 near ∂Ω, then if

f ∈ C2(∂Ω), the solution u ∈ C1 near ∂Ω, so the following classical Neumann data

are well defined

γ
∂u

∂ν
|∂Ω= h,

where h is a function in C2(∂Ω). To solve this problem Kim Knudsen [30] reduced

the problem to Schrödinger equation.

(∆− q)υ = 0 in Ω,

υ |∂Ω= γ1/2u |∂Ω= u |∂Ω= f (4.3.1)

where q, υ are given by

υ = γ
1
2u

q = γ−1/2∆γ1/2
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since γ = 1 near ∂Ω and u |∂Ω= f , In this section we will apply the Adomian

decomposition method to the problem

(∆− q)υ = 0 in Ω,

υ |∂Ω = f, ∂νυ = h on ∂Ω

from ∂νυ = h we can get approximation of ∂υ, which is assumed to be ζ. In R2,

υ = υ(x, y) so equation(4.3.1) is

∂xxυ + ∂yyυ − qυ(x, y) = 0 (4.3.2)

since γ : Ω → (0,∞), ∂νυ = h(y) and υ |∂Ω= f . Rewrite equation(4.3.2) in the

operator form

Lxxυ + Lyyυ −Rυ = 0 (4.3.3)

where Lxx = ∂2

∂x2
, Lyy = ∂2

∂y2
and Rυ = qυ. Applying L−1

yy =
∫ y

0

∫ y
0

to both sides of

equation(4.3.3)

L−1
yy Lyyυ = L−1

yy q(x)υ − L−1
yy Lxxυ∫ y

0

∫ y

0

(
∂2υ

∂s2
)dsds =

∫ y

0

(
∂υ

∂s
− υy(x, 0)s)ds

then we have

υ(x, y)− υy(x, 0)x− υ(x, 0) = L−1
yy q(x)υ − L−1

yy Lxxυ (4.3.4)

using the boundary condition υ(x, 0) = f and υy(x, 0) = ζ at y = 0, substituting in

(4.3.4)

υ(x, y) = ζy + f + L−1
yy q(x)υ − L−1

yy Lxxυ. (4.3.5)

As we knew Adomian decomposition method gives the solution υ(x, y) as infinite

series,

υ(x, y) =
∞∑
n=0

υn(x, y)
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substituting in (4.3.5) to get
∞∑
n=0

υn(x, y) = ζy + f + L−1
yy q(x)

∞∑
n=0

υn(x, y)− L−1
yy Lxx

∞∑
n=0

υn(x, y). (4.3.6)

from equation(4.3.6) define υ0 = ζy + f = f(x) + ζ(x)y and

υn+1(x, y) = L−1
yy q(x)υn − L−1

yy Lxxυn for n = 0, 1, 2, . . . .

The first three terms are

υ1 = q(x)L−1
yy υ0 − L−1

yy Lxxυ0

= q(x)L−1
yy (f(x) + ζ(x)y)− L−1

yy Lxx(f(x) + ζ(x)y)

= q(x)(f(x)
y2

2
+ ζ

y3

3!
)− L−1

yy (f ′′ + ζ ′′y)

= q(x)(f(x)
y2

2
+ ζ

y3

3!
)− (f ′′

y2

2
+ ζ ′′

y3

3!
)

υ2 = q2(x)(f(x)
y4

4!
+ ζ

y5

5!
)− (f (4)y

4

4!
+ ζ(4)y

5

5!
)

υ3 = q3(x)(f(x)
y6

6!
+ ζ

y7

7!
)− (f (6)y

6

6!
+ ζ(6)y

7

7!
)

then,

υ(x, y) = υ0 + υ1 + υ2 + υ3 + · · ·

= f(x) + ζ(x)y + q(x)(f(x)
y2

2
+ ζ

y3

3!
)− (f ′′

y2

2

+ ζ ′′
y3

3!
) + q2(x)(f(x)

y4

4!
+ ζ

y5

5!
)

− (f (4)y
4

4!
+ ζ(4)y

5

5!
) + q3(x)(f(x)

y6

6!

+ ζ
y7

7!
)− (f (6)y

6

6!
+ ζ(6)y

7

7!
) + · · ·

by reorder the terms of υ(x, y) we get that

υ(x, y) = f(1 + q(x)
y2

2!
+ q2(x)

y4

4!
+ q3y

6

6!
+ · · · )

+ ζ(y + q(x)
y3

3!
+ q2(x)

y5

5!
+ q3y

7

7!
+ · · · )− (f ′′

y2

2!
+ f (4)y

4

4!
+ f (6)y

6

6!
+ · · · )

− (ζ ′′
y3

3!
+ ζ(4)y

5

5!
+ ζ(6)y

7

7!
+ · · · )
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this solution can be written as summation of these series

υ(x, y) = f
∞∑
0

qn
y2n

2n!
+ ζ

∞∑
0

qn
y2n+1

2n+ 1!
−
∞∑
1

f (2n) y
2n

2n!
−
∞∑
1

ζ(2n) y
2n+1

2n+ 1!

υ(x, y) is approximately

υ(x, y) ∝ exp(iq.y) + w(x, y) (4.3.7)

Since υ(x, y) is bounded and is the unique solution of the Schrödinger equation so

it has this formula

υ(x, y) = exp(ik.x) as | x |→ ∞ (4.3.8)

where k is a complex orthonormal vector, k 6= 0 and x ∈ R. So from (4.3.8) and

(4.3.7)

exp(ik.x) ∝ exp(iq.y) + w(x, y)

but as | x |→ ∞ must ‖ w(x, y) ‖→ 0 in order to keep υ(x, y) bounded. Thus, we

have

exp(ik.x) ∝ exp(iq.y)

⇒ q ∝ k.x/y, from q = γ−1/2∆γ1/2 and u = γ−1/2υ we can find γ and u of the

conductivity problem respectively.
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